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Abstract 

2020 has been a very weird year. The 2020 Baseball season was no different. Instead of 

the normal 162 game season, it was a very short season of 60 games. In this research,  we used 

variable selection to determine what predictors have the highest effect on War(Wins Above 

Replacement). We also used several other techniques from multiple regression analysis to find 

the best fit for War.  
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Introduction 

2020 was a very weird baseball Season. The motivation behind this project is to see what 

kind of effect 2020 had on a player’s WAR and how WAR differs from a normal length season. 

For this project I used several statistics: WAR(Wins Above Replacement), OBP(On Base 

Percentage), Slugging(Slugging Percentage), HRs (Home runs), RBI(Runs Batted In), 

wRAA(Weighted Runs Above Average), wOBA(Weighted On base Percentage), Hits, Walks, 

Avg(Batting Average), and Handedness. In general, WAR assesses how valuable a player is. For 

example, one player could hit a lot of HRs, but his WAR isn't very high because he struggles in 

other areas like wRAA, or wOBA. OBP measures how often a player reaches base via hit(this 

includes HRs) or walk. Slugging percentage measures a player’s productivity. WRAA assesses 

how many runs a player creates for his team, relative to the league average. WOBA measures a 

player’s overall performance per plate appearance. This research uses Variable Selection to 

determine what statistics had the highest influence on WAR. It also uses techniques from 

multiple regression to determine the best fit. For the data analysis, I used R statistical software.  
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Data Analysis  

I started this project by collecting data from the 2020 mlb season. The data I collected 

included several different statistics for 98 players(49 left handed batters  and 49 right handed 

batters). These statistics were: WAR(Wins Above Replacement), OBP(On Base 

Percentage), Slugging(Slugging Percentage), HRs (Home runs), RBI(Runs Batted In), 

wRAA(Weighted Runs Above Average), wOBA(Weighted On base Percentage), Hits, 

Walks, Avg(Batting Average), and Handedness.  

After recording the data, I imported the data table into RStudio. To determine the 

effect of Handedness, I created two separate variables, one named Righthanded, and the 

other Lefthanded. After doing this, I created the scatterplot matrix below:  
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The scatterplot matrix shows that right handed hitters had a higher war in 2020 

than left handed batters(This differs from what we would expect from a normal length 

season).   Next, I created the original fit for WAR. The fit and the diagnostic plots are as 

follows:  

Call: 

lm(formula = WAR ~ OBP + Slugging + HRs + RBI + wRAA + WOBA +  

    Hits + Walks + Avg, data = MLB4) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.85003 -0.27211  0.00845  0.25336  0.77485  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)  

(Intercept)  0.212026   1.463139   0.145  0.88514  

OBP          0.331037   5.498938   0.060  0.95214  

Slugging    -1.618973   2.822587  -0.574  0.56782  

HRs          0.011577   0.024792   0.467  0.64176  

RBI         -0.005218   0.008085  -0.645  0.52046  

wRAA         0.078327   0.024644   3.178  0.00209 ** 

WOBA         5.575667   9.663463   0.577  0.56553  

Hits         0.017816   0.008431   2.113  0.03764 *  
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Walks       -0.006460   0.010877  -0.594  0.55417  

Avg         -4.965705   4.393963  -1.130  0.26172  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.383 on 82 degrees of freedom 

Multiple R-squared:  0.7129, Adjusted R-squared:  0.6814  

F-statistic: 22.63 on 9 and 82 DF,  p-value: < 2.2e-16 
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The regression model for the original fit is: 

WAR=0.331(OBP)-1.62(Slugging)+0.0116(HRs)-0.00522(RBI)+0.0783(wRAA)+5.58(wOBA)+

0.0178(Hits)-0.00646(Walks)-4.97(Avg)+0.212. The R squared value is 0.6814. We can tell by 

looking at the plots, that this original fit has problems with constant variance and cook’s 

distance.  

Now I wanted to see which predictors had the high influence on WAR. To do so, I used 

variable selection, a technique where you remove predictors one by one until each of the 

remaining one are statistically significant(p<0.05). As seen below, The final model included 

wRAA, Hits, and Avg. The R squared value for this model was 0.6973, which meant that 

69.73% of the variation in WAR could be explained by these 3 predictors.  

 

Call: 

lm(formula = WAR ~ wRAA + Hits + Avg, data = MLB4) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.89261 -0.26349  0.01905  0.25225  0.79657  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)  

(Intercept)  0.992633   0.317249   3.129 0.002380 **  

wRAA         0.085455   0.008092  10.561  < 2e-16 *** 

Hits         0.012354   0.003291   3.754 0.000311 *** 
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Avg         -2.767697   1.229618  -2.251 0.026886 *  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.3733 on 88 degrees of freedom 

Multiple R-squared:  0.7073, Adjusted R-squared:  0.6973  

F-statistic: 70.89 on 3 and 88 DF,  p-value: < 2.2e-16 

 

 

 

 

Now I wanted to try to improve  the fit for WAR.  To do this, I tried two different 

transformations. The first transformation I tried was transforming all the variables. To do 

this I used the powerTransform function with all the variables. The power transform 

along with the resulting model, and the diagnostic plots are below: 
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Call: 

lm(formula = WAR ~ tOBP + Slugging + tHRs + tRBI + twRAA + WOBA +  

    tHits + tWalks + Avg) 

 

Residuals: 

11 

      Estimated   Rounded  Lower Upper 

       **WAR**  0.8666 1 0.5772 1.156 

       **OBP**  0.008854 0 -0.5537 0.5714 

     **Slugging** 1.143 1 0.5192 1.766 

       **HRs**  0.5727 0.5 0.3721 0.7734 

       **RBI**  0.3334 0 -0.02299 0.6898 

       **wRAA**  0.5597 0.5 0.4247 0.6947 

       **WOBA**  0.4261 1 -0.4361 1.288 

       **Hits**  0.4791 0.5 0.1935 0.7647 

      **Walks**  0.45 0.5 0.3057 0.5942 

       **Avg**  1.472 1 0.9485 1.995 



 

     Min       1Q   Median       3Q      Max  

-0.73741 -0.28000  0.03256  0.24949  0.77325  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)  

(Intercept)   1.3950     4.9721   0.281   0.7798  

tOBP          1.4412     2.2780   0.633   0.5287  

Slugging     -1.2327     2.9962  -0.411   0.6818  

tHRs          0.1361     0.1522   0.894   0.3737  

tRBI         -0.1245     0.2271  -0.548   0.5852  

twRAA         0.4307     0.1600   2.692   0.0086 ** 

WOBA          3.8807    10.4567   0.371   0.7115  

tHits         0.2674     0.1287   2.078   0.0408 *  

tWalks       -0.1085     0.1170  -0.927   0.3565  

Avg          -6.2309     5.0520  -1.233   0.2210  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.3825 on 82 degrees of freedom 

Multiple R-squared:  0.7137, Adjusted R-squared:  0.6823  

F-statistic: 22.71 on 9 and 82 DF,  p-value: < 2.2e-16 
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The regression model for full power transformation fit is: 

WAR=1.44*log(OBP)-1.23(Slugging)+0.136*(HRs)^(½)-0.125*log(RBI)+0.431*(wRAA)^(½) 

+3.88(wOBA)+0.267*(Hits)^(½)-0.109*(Walks)^(½)-6.23(Avg)+1.40. While this fit has a 
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higher R squared value than the original one, it still has problems with cook’s distance and 

constant variance. The second transformation I tried was inverse response:  

 

 

 

 

 

Call: 

lm(formula = tWAR ~ tOBP + Slugging + tHRs + tRBI + twRAA2 +  

    WOBA + tHits + tWalks + Avg) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-1.82559 -0.68809 -0.01112  0.47404  2.36418  

 

14 

 Estimated  Rounded  Lower Upper 

OBP  -0.0389 0.0 -0.6095 0.5317 

Slugging  1.1274 1.0 0.5024 1.7523 

HRs  0.5771 0.5 0.3759 0.7782 

RBI  0.3382 0.0 -0.0180 0.6944 

wRAA 0.5348 0.5 0.3953 0.6743 

WOBA 0.3309 1.0 -0.5432 1.2049 

Hits 0.4699 0.5 0.1794 0.7604 

Walks 0.4538 0.5 0.3090 0.5986 

Avg  1.4219 1.0 0.8929 1.9509 



 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)  

(Intercept)   1.4021    10.8372   0.129  0.89738  

tOBP          2.9589     4.9651   0.596  0.55285  

Slugging     -1.4830     6.5306  -0.227  0.82092  

tHRs          0.2347     0.3317   0.708  0.48123  

tRBI         -0.2015     0.4951  -0.407  0.68508  

twRAA2        0.9334     0.3487   2.677  0.00897 ** 

WOBA          7.6179    22.7915   0.334  0.73905  

tHits         0.5330     0.2805   1.900  0.06090 .  

tWalks       -0.1781     0.2550  -0.698  0.48687  

Avg         -13.5993    11.0113  -1.235  0.22035  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.8336 on 82 degrees of freedom 

Multiple R-squared:  0.7142, Adjusted R-squared:  0.6828  

F-statistic: 22.77 on 9 and 82 DF,  p-value: < 2.2e-16 
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The model for the inverse response transformation is: (WAR)^1.58 

=2.959*log(OBP)-1.483(Slugging)+0.2347*(HRs)^(0.5)-0.2015*log(RBI)+0.9334*(wRAA)^(0.

5)+7.618(wOBA)+0.5530*(Hits)^(0.5)-0.1781*(walks)^(0.5)-13.60(Avg)+1.402. 

Not only does this fit have a higher R Squared value than the original fit, it also fixes the cook’s 

distance problem( the normal power transformation model failed to do this). Inverse response 

still fails to account for problems with constant variance. 

 

 

 

 

17 



 

Conclusion 

The inverse response transformation gave us the best fit for WAR. The inverse response 

model had an R Squared value of 0.6828, vs 0.6823 for the normal power transformation model. 

The inverse response model also fixed issues with cook’s distance. One thing Inverse response 

still did not fix is the issue with constant variance. In order to further improve the fit for WAR, I 

could have tried other models such as the tree based model.  There were also a couple lurking 

variables that affected my model. For example, defense and baserunning factor into WAR as 

well, but I didn't include statistics such as BsR(Base Running Runs) or UZR(Ultimate Zone 

Rating): A player could be really good offensively, but still have a low WAR because he is not a 

great base runner or fielder.  Having said that, had I used Offensive WAR instead of just WAR, 

the model would have been a lot better, because offense WAR does not include defense.  
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