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Abstract

Before the age of computers, inferential statistics required heavy levels of formula-

based computation to get estimations and the accuracy of those estimations from even

small sets of data. But now, methods have been introduced that cut down the computation

with the use of iterative resampling from samples in any distribution. Resampling is the

method of taking a sample and creating different samples from that sample with their own

distribution using any method of resampling the statistician deems fit. Two such methods of

resampling are the Jackknife and Bootstrap methods. In this presentation, we’ll be taking

a look at what these methods are, how they work, and assessing the pros and cons of their

methodology in certain situations.
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1 Introduction

Statistics is the field of mathematics whose goal it is to gather and analyze meaning

from sets of empirical data. In order to do this, we focus on collecting data about a popula-

tion and pulling information about that population through estimations, and by estimations

we mean things like mean, median, risk, anything about the population distribution we care

to talk about. Once we do this, we go further by analyzing the validity and accuracy of those

estimations. We measure the spread of our distributions and construct confidence intervals

around them to get a sense of how accurate the estimation was to the real parameter of the

population. This last point is what we will be focusing on in this report: looking back on

our process and assessing how well our methods of estimation actually reveal truth about

the population.

To assess the accuracy of a statistic, a collection of data taken from the population

needs to be analyzed, and as it takes no stretch of the imagination to understand that the

more information we have, the more confidence we will have about our accuracy. However

in many cases, little is known about the original population and in some instances collecting

data about it may be difficult. In here lies a problem: how do we estimate a parameter

without having that much information to work with in the first place?

Additionally, what if there is a lot of data about a population, but we want to analyze

the accuracy of an estimation that may not be so easy to calculate? We know that the

standard deviation and standard error, terms often used interchangeably give insight into

how a sampling distribution’s mean coincides with a population’s mean, but that’s about it.

What about other estimators besides the mean? We can use Taylor series approximations

to predict accuracy, but there’s no unified formula for every estimator. So, how can we

easily work out how close an estimation like the median is to the true parameter of the

population?

We can use resampling techniques. Resampling is the method of repeatedly taking

samples from an original sample in a distribution to create a secondary distribution that we

can then analyze. Doing this allows us to come up with meaning about our population from

very little initial information, and allows us to open the door to estimating the accuracy of

estimations that are hard to calculate.
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2 Resampling Techniques

The idea behind resampling is interesting in that it is creating a sort of multitude out

of a single sample, and with each of these derived samples, we can compute the outputs of

an estimator function on each sample and then plot these outcomes in a distribution. Since

the information in this new distribution is purely given by estimations from each sample

and not the samples themselves, the mean and the spread of the resultant distribution will

reveal information about the true estimator of the population and how confident we can

be with it. Once we have this daughter distribution given by the outputs of the estimator

function of each inputted resample, basic calculation mirroring the original standard error

calculation for a population mean can be conducted with that information to achieve results.

There are many resampling techniques used today, but we will be taking a look at two of

the most widely used.

2.1 Jackknife Method

The Jackknife method, developed in 1949 by M.H. Quenouille, is the first resampling

method ever developed and is still used globally for its specific properties. The method

starts out by taking an independent and identically distributed sample from a distribution

of size n. It is necessary that the shape of this sample is as close as possible to the shape

of the population distribution so that the results we observe at the end can be applied to

the population as a whole. Letting θ̂ be the estimator function for which the parameter we

wish to measure the accuracy of, we have,

x = {x1, x2, ..., xn}, θ̂ = s(x).

From this sample we take n resamples, each having every element of the original with

a unique element taken out:
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x(i) = (x1, x2, ..., xi−1, xi+1, ..., xn)

Next, we input each of these samples into the estimator function to get the estimation

of each sample and plot these in a distribution:

θ̂(i) = s(x(i))

Now that we have our desired daughter distribution, we take the Jackknife Estimation

of Standard Error of the Estimator:

ŝe(jack) =

[
n− 1

n

n∑
1

(
θ̂(i) − θ̂(·)

)2]1/2
, with θ̂(·) =

n∑
1

θ̂(i)/n.

Since we’re doing this standard error calculation of sorts on the estimations and not

the samples themselves, the output is effectively the spread of the sample statistics and not

the samples, shedding light on the accuracy of the population parameter. You may have

noticed the term (n − 1)/n before the summation in the standard error calculation. This

is a fudge factor Quenouille threw in so that when a statistician so picks the mean as their

estimator, this calculation falls to our normal standard error calculation people learn in

Stats 101.

Let’s see how this works. Let θ̂ be the mean. Then θ̂(i) is the average of the elements

of x(i) with one of the elements taken out:

θ̂(i) =
nx− xi
n− 1

Further, it can be shown that θ̂(·) being the average of the estimations of each re-

sample, recovers simply the average of the elements of the original sample:
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θ̂(·) =

n∑
1

θ̂(i)/n

=
n(nx)− nx

(n− 1)n

=
(n− 1)nx

(n− 1)n

=x.

Plugging this into the standard error calculation, we have

ŝe(jack) =

[
n− 1

n

n∑
1

(
θ̂(i) − θ̂(·)

)2]1/2

=

[
n− 1

n

n∑
1

((x− xi)/(n− 1))2

]1/2

=

[
n∑
1

(x− xi)2/(n(n− 1))

]1/2
,

which is our normal standard error calculation for a distribution of sample means.

2.2 Bootstrap Method

The Bootstrap Method, developed in 1979 by Bradley Efron is one of the most

used resampling methods used around the world today. It starts out with the same exact

assumptions as the Jackknife Method. Pick an estimator function, and take an independent

and identically distributed sample from a distribution, but this time the statistician takes a

number of Bootstrap resamples as they so desire with the same size as the original sample,

sampling elements from this sample each with equal probability of being picked and with

replacement. In essence, these samples are perfectly random samples taken from the original

as if that sample were its own population. In literature, you may see this sample referenced

as a ”surrogate population.” Once we have these resamples of amount B, we then input

them into the estimator function and plot each of these outputs in their own daughter

distribution.

6



x∗
b = {x∗1, x∗2, ..., x∗n}, forb = 1, 2, ..., B; θ̂∗b = s(x∗

b)

Once this is done, we compute the Bootstrap Estimation of the Standard Error of

the Estimator to analyze how well it coincides with the population parameter:

ŝeboot =

[
1

B − 1

B∑
b=1

(
θ̂∗b − θ̂∗(·)

)2]1/2
, where θ̂∗(·) =

B∑
b=1

θ̂∗b/B.

While there are significant similarities between this method and the Jackknife Method,

the level of variability with how many resamples can be taken and with the construction of

the Bootstrap samples themselves offers much wider variety in the way it can be applied.

In turn, and this will be shown later, this method offers a lot more power in statistical

inference than the previous method.

3 Jackknife Method Program and Results

To study the efficacy of these resampling methods, I wrote a program in Java to

create the Jackknife samples and compute the Jackknife Estimation of the Standard Error

of the Estimator.
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Here’s an example of a sample being input and the program outputting the Jackknife

resamples and their estimations’ standard error:

With the use of this program, the method was analyzed using samples of different

sizes and distributions to see how well it worked with certain givens. Here is the list of

samples that were used:

S1 = {4, 5, 5, 6, 6, 6, 6, 7, 7, 8}

S2 = {3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 9}

S3 = {3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9}

S4 = {2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9}

Here are the results of the Jackknife Method implemented on these samples:

Sample n x σ sejack 95%CI

S1 10 6 1.1547 .11547 [5.774,6.226]

S2 20 5.60 1.8180 .0909 [5.442,5.778]

S3 25 6 1.7078 .0683 [5.886,6.134]

S4 35 6.17 2.1894 .06255 [6.048,6.292]

The samples S1 and S3 are normally distributed, S2 had two big humps, and S4 was

left skewed. There didn’t seem to be any trend in variation of the standard error given

different types of distributions, however there is seemingly a decrease in the standard error

calculation when the sample size increased. As the sample sized increased, the standard

error decreased.
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The big takeaways for the Jackknife Method is that it is non-parametric, meaning

there need not be any underlying assumptions about the original distribution for this to

be used, there is a unique calculation for any given sample and chosen estimator, and on

the downside there is bias above the true variance of the standard error. This last point

is due to the fudge factor (n − 1)/n incorporated into the calculation. We can see that

for any given value of n since it is necessarily a positive integer by definition, will always

be less than 1 and greater than 0. When this value whatever it may be is square rooted,

the result will still be less than 1, but greater than what it previously was. Therefore, the

resultant variance will be upwardly biased from what it would have been if this fudge factor

wasn’t there. In addition to all of this, there is a serious defect to this method that is worth

mentioning.

4 The Jackknife’s Connection to Directional

Derivatives

We can rework the standard error calculation to be this,

ŝejack =

[∑n
1 D

2
i

n2

]1/2
, whereDi =

θ̂(i) − θ̂(·)
1/
√
n(n− 1)

where each Di can be looked at as a directional derivative. What it would be referencing

then is the infinitesimal change on the standard error when an estimation θ̂(i) is taken

without the weight of one of the elements in a sample, i.e. how much influence taking out

one sample,itself having one element taken out, will have. If the influence is so strong on θ̂(·)

from the data that we resample from, then the calculation breaks down and the standard

error blows up.

A good example of this can be seen in the book Computer Age Statistical Inference

written by Bradley Efron and Trevor Hastie.
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Figure 1: tot vs. age; ”Computer Age Statistical Inference,” Efron, Hastie.

The graph above is a result of plotting n = 157 healthy patients’ age and kidney

function. Each (xi, yi) coordinate pair gives each patients’ age and kidney function, and

we want to estimate the correlation between the two. The green curve is a regression curve

resulting from a computer-based algorithm lowess which takes data within small windows of

x values and uses the best regression model for that data using Taylor series approximations.

We can see that towards the higher ages, the lowess algorithm popped out regression lines,

while in the younger ages, the algorithm ascended to more quadratic, cubic, higher degree

regression curves. The biggest point to notice is that if we were to find the derivative

function of this curve, right at the age of 25 the derivative would blow up towards very large

numbers. We have that kink right there signifying that the data took a sharp turn up as

the derivative shot up.

We can use the Jackknife Method to analyze the correlation between the age ranges

the lowess algorithm used and their kidney functions. Since we want to analyze the corre-

lation between age and kidney function, we should designate our estimator function as the

correlation coefficient formula. When we work through these data segmenting the distribu-

tion into 5 year segments, we get this:
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Figure 2: CI’s on tot vs. age; ”Computer Age Statistical Inference,” Efron, Hastie.

The dashed blue line in the figure above gives the 95 percent confidence intervals

from the jackknife standard errors in each segment of data. Look at what happens at age

25: the standard error came out to be way higher than expected. This is because behind the

scenes a large change of the data gave a high derivative change, meaning that the influence

of the elements that were being taken out in each of the Jackknife samples was high and

coalesced to a high change in the standard error. We can accept this when we consider the

Jackknife Estimation as a sum of squared directional derivatives. The moral is that the

Jackknife Method shouldn’t be used for volatile data like this. The red lines in the figure

are the confidence intervals from using the Bootstrap Method, which we’ll be taking a look

at now.

5 Bootstrap Method Program and Results

Just as with the Jackknife Method, I wrote a Java program to construct Bootstrap

samples from an inputed sample and compute the Bootstrap Estimation of the Standard

Error of the Estimator for those samples:
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Here is it in action:

Using this program, data was collected to analyze the efficacy of this method. Take

S1, S3, and S4 to be the same samples as they were in the analysis for the Jackknife Method.

The following are the results for these samples.

S1:

n = 10, x = 6, σ = 1.1547
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B T1 x T1 se T2 x T2 se

50 6.066 .379371 5.959 .270457

100 6.014 .335153 5.942 .345294

500 6.016 .328451 5.984 .355072

1000 6.000 .354578 5.987 .349374

S3:

n = 25, x = 6, σ = 1.7078

B T1 x T1 se T2 x T2 se

50 6.0392 .344898 6.1248 .341008

100 5.970 .342132 6.0332 .307853

500 6.0158 .360839 6.0228 .338022

1000 5.987 .329110 5.988 .328273

S4:

n = 35, x = 6.17, σ = 2.1894

B T1 x T1 se T2 x T2 se

50 6.1543 .335986 6.188 .396490

100 6.2808 .349096 6.1726 .360144

500 6.1659 .358098 6.1563 .371819

1000 6.1559 .371920 6.1731 .342711

With some outliers, there’s no obvious trend that comes when increasing the size of n or B.

Given these were are relatively normal, more research must be conducted to see any trends

for different types of distributions.

A big takeaway for the Bootstrap Method are that unlike the Jackknife Method the

Bootstrap Estimation yields different results for the same given sample and estimator every

time it is implemented. This is one reason this method is used more widely. In statistics,

it is often the case that the more data there is the better our picture is of the population.
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So with this variability, data can be collected ad nauseam from one sample to get as clear a

picture as we can of the population. On the other side, if results need to be found quickly

for the publication of a paper or for a report on how well a new drug works or anything

like that, the Jackknife Method should be used so that results can be evaluated with an

extra level of certainty. Aside from this, the Bootstrap Method is a powerful tool to use in

statistical inference.
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