The Cornerstones of Algorithmic Randomness

Author: Caleb Gill
Instructor: Dr. Rachel Epstein

May 11, 2021

Abstract

Algorithmic Randomness is a research area of mathematics ded-
icated to determining if something is random or not. There are sev-
eral definitions and interpretations of randomness, but for the pur-
poses of this paper we will be focusing on the most widely accepted
definitions and intuitions.

1 Introduction

What does it mean for a mathematical object to be considered
random? Let’s look at some examples.

Example 1: S; = 1010101010 - - -

Example 2: S; = 1001011001 - - -

If we look at S7, we can see that it is clearly not random because
it is just 10 repeated indefinitely. But what about Sy7 It definitely
seems like it would be random but in actuality it isn’t! We will
explore why later.

Before we dive into this topic, we will have to go over some pre-
liminary knowledge. Note that the sections preceding Section 6 are
meant to be used as a reference as needed.

2 Notation

Here we will explain some of the common notations that will be
used throughout this paper. Anything else will be explained when
it is brought up.

In this paper we will be primarily looking at what are called
sequences and strings. Strings are finite sequences of Os and 1s while
sequences are infinite. The sets of strings and sequences are denoted
by 2<¢ and 2“ respectively.

Often we will wish to look at the length of a string, o, so we
denote it by |o|. As for sequences we will also wish to look at its
initial segments. So if A € 2% then A [n represents A restricted to
its first n-bits. One important string that we will occasionally bring
up is A which is the empty string or the string of length 0. Lastly
we will often talk about extending strings. So suppose that we have
two strings o and p, and p = o7 for some 7. Then we say that p
extends o and write p > o. If p has the potential to equal o, then
we write p = o.

We will also bring up the notion of concatenation or the com-
bining of strings. Let 0,7 € 2<“. Then o7 is simply the string o
followed by the string 7. For example if 0 = 110 and 7 = 101, then
ot = 110101. (Downey & Hirschfeldt, 2010)

Lastly we can also represent real numbers from the interval [0, 1]
as binary sequences as well. We simply start with a decimal point
and then add the binary sequence after. We will go more into this
when we talk about Martingales.

2.1 Length-Lexicographic Ordering

Let o and 7 be strings. If either |o| < |7| or else both |o| = |7|
and o(n) = 0 for the least n such that o(n) # 7(n), then we can
say o is less than 7. We call this the Length-Lezicographic Ordering
of 2<“. (Downey & Hirschfeldt, 2010)

3 Important notes from Computability Theory

In this section we will give a brief overview over the area of Com-
putability Theory since the concept of Algorithmic Randomness will
be based around this logic. There are many different ways to handle
computability. For example we could look at every possible computer
program. Many people have attempted to define computability and
there are many definitions that are equivalent. In this paper we will

use the Turing Machine definition.!

3.1 Functions

Let’s define what a function is for the purposes of this paper.
The first type of function is what we call a total function. These
are functions whose domain is N and outputs elements from N. The
next type of functions are partial functions. These have domains
that are subsets of N who also output elements from N. Therefore
we can say that all functions are partial functions but not necessarily
the other way around.

Suppose that z is in the domain of some function f. Then we
write f(z) | and say that the function halts or converges. If x isn’t
in f’s domain, then we say that f diverges and write f(z) 1.

Definition 3.1.1 For a set A, the characteristic function of A is
the following total function.

XA(”):{(l) Z;i

Often we will simply represent x4 with A. So we will write
A(n) to mean xa(n). Therefore A(n) = 1 implies that n € A and
A(n) = 0 implies that n ¢ A.

3.2 Turing Machines

One of the more significant and rigorous definitions of computabil-
ity is given by Alan Turing. He thought about how people do com-
putations on paper and abstracted these actions into 4 parts: i)
they read the symbols, ii) they write the symbols, iii) they hold
these symbols in their mind, and iv) they look at other symbols on
the paper. With these ideas in mind, we will introduce the next
topic.

A Turing Machine, sometimes denoted by TM, is an idealized
computer that has a tape it can read and write on, a head that does
the actual reading and writing, and moves back and forth along
the tape, and an internal state which changes depending on what

INote that unless stated otherwise, the information in this section will come from Weber’s
book on Computability Theory.

happens during the computation. It also has a list of rules that
are applied based on the current internal state and symbol that the
head is reading.

The tape in the Turing Machine is divided into squares, each with
a symbol on it, and the head rests on a single square at a time. The
head will move left or right one square depending on the internal
state. We specify Turing Machines with a finite set of quadruples,
(a,b,c,d). Note that some authors use finite sets of quintuples, but
for the purposes of this paper we will stick to the quadruples. These
are sets of instructions that are decoded as follows:

e ¢ is the state the TM is currently in

e b is the symbol the TM’s head is currently reading

e ¢ is an instruction to tell the head to either write or move

e d is the state the TM is in at the after the instruction is done

Let’s look at an example, (gs, 1,0, g3) means “I am in state g5 and
[am currently reading 1. I must change 1 to 0 and now I am in state
qs.” If we wish to move Left or Right, typically we will write L or
R respectively. Sometimes we will have the symbol (%) in position
¢ which tells the machine to delete whatever it is reading.

Any computation that yields an output must only use a finite
number of squares on the tape and finitely many steps for the com-
putation. Since Turing Machines represent idealized computers we
must allow them unlimited time and memory to complete their com-
putation. It is important to differentiate this from infinite time and
memory. Rather this means that we allow the TM as much time and
memory as it needs to finish its computation. However we cannot
bound the tape at the beginning. What if the computation is one
square short? Thus the tape of the TM is infinite even though the
computation will only use a finite length of it.

But how does the TM know when to stop? There are states
that we call halting states, and they can be described as moments
in the computation when the machine can no longer do any more
instructions.

So far we’ve explained how Turing Machines operate, but we have
yet to explain how they actually take in values and give outputs.
Turing Machines take in elements from N and convert them either
into their binary forms or n+1 1s. We say n+1 vs n to allow 0 a place
on the tape. We will focus primarily on the n 4 1 1s representation.

So the machine takes in natural numbers represented as n+1 1s, and
after the computation ends the output will be the number of 1s on
the tape. Note that TMs can have a variety of inputs and outputs.
For example they can have strings for their inputs and outputs as
we will discuss later.

Definition 3.2.1: Let A C N. A partial function, f: A — N, is
partial computable if there is a TM that can compute it. In other
words, if M is a TM that computes f, then Vo € A, f(x) € N is the
output computed by M.

A similar definition can be made for total computable functions,
but we will just call them computable functions.

The Church Turing Thesis: Something important to bring
up is the Church-Turing Thesis which essentially states that every
intuitively computable function is a Turing-computable function (a
function that can be computed using a Turing Machine). Therefore
if we have an algorithm that describes a function, we may assume
that there is a TM that computes it, and we don’t necessarily need
to know its instructions. (Brodkorb, 2019)

3.3 Coding and Countability

Before we can talk about a Universal Turing Machine, we must
first introduce the notions of countability and coding. How could
we define computability outside the domains of N7 If the domain
we want is countable, then we may be able to code its members
as elements of N. For example, we could code Z into N using the

following function.
2x x>0
f(m)_{—Qx—l T <0

Observe that any even numbers would represent positive integers
while any odd numbers would be negative integers. The important
property we need in order to treat elements from N as codes of
elements from another set S is that we need a computable bijection
between S and N. Thus we can have a computable inverse with
this as well. Sets with this property are called effectively countable,
and the image of the element of S under this bijection is its code.
The main reason we wish for there to be a bijection between N and

S is that this will form a unique mapping between every pair of
elements between S and N. Lastly, the effectiveness of this function
is important since bijection cannot be used in a Turing Machine
unless it is computable.

Often coding is ignored in research papers since one simply as-
sumes a coding function between some countable set S and N is
fixed. Now we wish to move into higher dimensions of the naturals.
Let’s consider N2. We will bring up the idea of pairing functions.
Pairing functions are those that send n-tuples from N" to N. There

is a standard pairing function indicated below that pairs 2-tuples to
N. It is defined as

(x,y) == %(wQ + 22y + y* + 31 + y).
If we have higher tuples of naturals, we can still use this function.
For example, (x,y,z) := ((z,y),z). This can be extended to n-
tuples. We will not go into too much detail where the standard
pairing function comes from as it is not necessary for the rest of this
paper, but it is not difficult to derive.

One interesting observation about the set of Turing Machines
is that since each TM is defined by a finite set of information, it
is effectively countable. Just like the standard pairing function we
will not go into too much detail with this, but do note that since
Turing Machines are finite sets of 4-tuples we can code them with
multiple instances of said pairing function. Another thing to keep in
mind is that they will also include what we call “junk machines”, or
machines that don’t really do anything. We will also get machines
that will compute the same functions.

Definition 3.3.1: We call the code of a Turing Machine its
inder. When we choose a particular coding for a Turing Machine,
we say we fix an enumeration of the Turing Machines. Often we
use ¢ for partial function and ¢, represents the e machine in the
enumeration or the machine with index e.

Definitiion 3.3.2 (Downey & Hirschfeldt, 2010): We say that a
set A C N is computably enumerable (c.e.) if there is some Turing
Machine, M, such that A = dom(M). Since Turing Machines can
represent partial functions, we could also say for some e that A =

dom(epe).

3.4 Universal Turing Machines

Here we will define a Unwversal Turing Machine U. This is a
machine that represents every other machine.

U(<€a x>) = Soe(x)'

U decodes (e, x) into the pair (e, z), decodes e into the appropri-
ate set of quadruples, and uses x as the input.

3.5 Kleene’s Recursion Theorem

One significant result from Computability Theory is Kleene’s Re-
cursion Theorem. It allows us take the index from a computable
function that we are creating and use it in the construction of the
very thing we are trying to construct.

Theorem 3.5.1: (Nies, 2009): If f is a computable function,
then there is some number n such that

Pn = Pf(n)-
The index n is also called a fized point of f.

3.6 Reals

Here we will bring up the notion of reals. Reals for the purposes
of this topic are irrational numbers on the interval [0, 1] and will have
unique binary expansions. We identify them with elements from 2“
and subsets of N. In other words if A C N, then a real a can be
defined as

a = 0.xa(1)xa(2)xa(3)xa(4)...

Definition 3.6.1: Let D be a countable set. A function f :
D — R is c.e. if there is a computable sequence of computable
functions that approximate f from below; that is, f, : D — Q
such that for every s and = € D we have that fs(z) < fsi1(z) and
limg o0 fs(z) = f(x). (Downey & Hirschfeldt, 2010)

4 Some Basics on Measure Theory

A measure on a set is a way to describe the size or length of
said set. When we wish to define the measure of a particular set,

S, we used the notation p(S). However the measure of sets of bi-
nary sequences can be very tricky to think about. Let’s look at the
following diagram to see how we measure binary sequences.

0/)\\1
VANVAN

When talking about measuring binary sequences, we look at the
extensions of finite strings. Let o0 € 2<“. Then the extensions of o,
denoted by [o], is the set of infinite sequences whose initial sub-
sequence is o, that is, o] = {cX : X € 2¥}. For example, if
7 = 10011101, then [7] is the set of all sequences whose initial part
is 10011101.

If we wish to measure [o], then we find the probability of each
sequential bit being either a 1 or 0. Then the measure of [o], defined
as u([o]), is p([e]) = 2719l For example suppose o = 101. Then
p(lo]) = 2710 =275 = 1

Let A C 2<%, Then [A] := ,c4lo]. In words this means that
the extensions of some subset of the finite binary strings, A, is the
union of the extensions of ¢ for every ¢ € A. A sequence of binary
basic open sets {[o] : 0 € A} is said to cover a set C C 2% if
C C [A]. The outer measure of C is

p*(C) = inf { 22_‘0“ : {[lon] : n € N} covers C}.

In words, first we look at all the ways we can cover C. Then we

sum up the measures of every extension and take the infimum of
this. Next let C' be the complement of C, that is, C' = 2*\C. The

inner measure of C is y,(C) = 1 — p*(C). If C is measurable, then
p*(C) = p(C), and this quantity is the measure u(C'). (Downey &
Hirschfeldt, 2010)

5 Kolmogorov Complexity

2 Here we will introduce some notions of Complexity, specifically
plain and prefix-free Kolmogorov Complexity. Note that TMs from
here will take strings as their inputs and give strings as their outputs.

5.1 Plain Kolmogorov Complexity

Let M be a machine and M(o) = 7. Then we say that o is
an M-description of 7. Note that an M-description of 7 can have
shorter length than 7. Thus we can think of ¢ as a compressed form
of 7 sort of how we described in the introduction paragraph of this
section. The main reason why we find this interesting is to see how
well 7 is being compressed. In other words, we want the length of
the shortest description. Hence we introduce a new definition.

Definition 5.1.1 Let M be a machine. The Kolmogorov Com-
plexity of a string 7 € 2<% with respect to M is the smallest length
of 0 € 2<% that yields 7 in M, that is,

Cy (1) =min{|o| : M(o) =7},
where the minimum is taken to be oo if the set is empty.

Observe that our value for complexity is dependent on our ma-
chine M. Hence we would like to remove this dependence. Recall
back to our previous definition of Universal Turing Machines. For
any machine @, there is a Turing Machine such that U((e,x)) =
¢e(r). Hence U({e,a)) = M,(c) where M, is the e machine that

takes in strings. Here we will alter this notion. For the U described
above, there is a string p for every machine M such that

U(po) = M(o).

These strings are called coding strings and their respective lengths
are the coding constants. Then for every string o,

Cu(o) < Cu(o) +|pl-

Now that we have a universal description for any machine, we
can now define the (plain) Kolmogorov Complexity as

C(o) = Cu(o)

2The source for this information comes from section 3 in Downey and Hirschfeldt’s book
on Algorithmic Randomness and Complexity.

for every o € 2<%,

Next let’s observe the following theorem as we will need it later.

Theorem 5.1.2 Let £ be a fixed constant. If p is sufficiently
long enough, then there is an initial segment, o, of u such that
C(o) < |o| — k.

Proof: Let u be a sufficiently long enough string and & be a fixed
constant. Let v be an initial segment of p with n being such that v
is the n'? string in the Length-Lexicographic Ordering of 2<“. Now
let p be such that |p| = n and it takes up the next n bits of p. Lastly
let ¢ = vp. Note that by the Church-Turing Thesis we can build a
machine M such that M(p) = 0. Let ¢ be the coding constant of M
in U. Thus

C(0) < Curlo) +c = Ipl +c,

However |o| = |v| + |p| and if we choose v such that |v| > ¢+ k,
then we have that

Clo) <lpl+ec=lof =[v|+e<lo| = |v[+ || =k =|o] = k.
Hence C(0) < |o| — k.

5.2 Prefix-Free Kolmogorov Complexity

Here we will introduce the notion prefix-free Kolmogorov Com-
plexity. The main reason we talk about this concept is to deal with
algorithmic randomness of infinite sequences. Many people believe
that this notion of Kolmogorov Complexity is the correct notion vs
plain Kolmogorov Complexity.

One argument for this is that with plain Kolmogorov Complexity,
if 7 is a description of o, then the bits of 7 contains all the informa-
tion necessary to yield o. But a Turing Machine M might produce
o by not only using the bits of 7, rather it may also use the length
as well. If M is allowed to use the length of 7, then there must be
some termination symbol T on M’s input tape following the bits of
7. Therefore the output that is based on the output alphabet {0, 1}
is dependent on the following input alphabet {0, 1,7} which many
view as cheating.

Definition 5.2.1: A set A C 2<% is prefiz-free if it is an antichain
with respect to the natural partial ordering of 2<“; that is, for every
o € A and every 7 properly extending o, then 7 ¢ A.

10

Prefiz-free functions and prefix-free Turing machines are those
whose domains are prefix-free. It is usual to consider a machine
such as this as self-delimiting which basically means that it has a
one-way read head that halts when the machine accepts the string
described by the bits read so far. The reason why is so that the
machine is forced to accept the strings without knowing whether or
not there are more bits on the input tape.

Definition 5.2.2: Let U be a prefix-free universal TM. Then the
prefiz-free Kolmogorov Complexity of o is said to be

K(o) = Cy(o).

6 Cornerstones of Algorithmic Randomness

3 Here will look at three major approaches to defining algorithmic
randomness for infinite sequences.

The first is the computational paradigm. The idea behind this
paradigm is that the initial segments of random sequences are hard
to describe.

The second is the measure-theoretic paradigm. With this notion,
random sequences are those with no “rare” properties, that is, a
random sequence should pass all effective (or computable) statistical
tests.

The last is the unpredictability paradigm. This approach is based
on the idea that we should not be able to predict the next bit in a
random sequence even if we know what every previous bit is, hence
the name “unpredictability”. One can look at this like coin tosses
where each output of flipping a coin infinitely many times will be
unpredictable.

We will use all of these approaches to define three equivalent def-
initions of randomness which we will called Martin-Lof Randomness
or 1-Randomness.

6.1 The Computational Paradigm

As mentioned previously, random sequences in the sense of the
computational paradigm are those whose initial segments are hard

3Unless stated otherwise, the source for the information in this section comes primarily
from chapter 6 of Downey and Hirschfeldt’s book on Algorithmic Randomness.

11

to describe.

A natural first attempt to defining randomness for some set A
would be to say for every n, C(A [n) > n —d for some d. However
this contradicts theorem 5.1.2 so no such set exists. However we can
correct randomness for sequences with complexity by using prefix-
free complexity.

Definition 6.1.1 A sequence A is I-random if there is some d
such that K(A [n) > n —d for all n.

What this is saying is if for every n the length of the shortest
universal prefix-free description of A [n is greater than or equal
to n — d, then we cannot describe any initial segment of A in a
shorter /nicer way. Hence every initial segment is hard to describe.
Next we will introduce a particular number that we will prove is
1l-random.

Definition 6.1.2: Let U be a universal prefix-free machine. The
halting probability € (sometimes called Chaitin’s Q) of U is

Q=p([domU]) = Y 27V

oedom U

Let Qs = > caomuls) 27191, Note that U[s] is the universal ma-

chine up to it’s s stage, so dom U[s] is the set of every string in-
cluded up to this point. We care about €2, because it is computable
whereas €2 is not. Note lim,_,., 5 = €. Observe that the value of
(2 is dependent on the choice of U but each €2 is closely related to
each other.

We will not prove this result but note that €2 is irrational. Hence
limg oo Q25 [n = Q | n. What this means is given an n after some
stage t for all s > ¢, QO [n = Q | n. The same cannot be said if
() was taken to be rational. In order to better understand this let’s
suppose €2 could be rational and let €2 = 0.101. Then a sequence that
approaches this could be 0.1 ,0.10,0.1001 ,0.10011, 0.1001111, etc.
Because), can never equal 2 there will never be an s such that
Qs [3 =0.101. However because € is irrational for every n, there
will always be an s such that Q4 [n =Q | n.

But why do we care about this? Specifically why do we care about
Q7 Recall that this is actually computable whereas €2 isn’t, and we
wish to show that 2 is 1-random. The definition of 1-randomness
uses the concept of Turing Machines and we will need something

12

that is computable. Hence we will look 2’s approximations from
below to prove this. In particular we need our proof to be such that
for every n, lim,_ .o 25 [n = Q [n, which would not be the case if
() was taken to be rational.

Theorem 6.1.3: 2 is 1-random

Proof: First we build a prefix-free TM dependent on some n, so
that M = ®y(,). By the Recursion Theorem there is a ¢ such that
D) = ®.. Hence ¢, = M, so we may assume that we know the
index ¢ of this machine that we are building in advance. However
this is for machines that take in numbers as their inputs. Let’s adapt
this to machines that take in strings. We may assume to know the
coding string, p, of M in some universal machine U and its length,
|p| = ¢. Then for every o € dom(M), U(po) = M(o).

Next we run U until we have a potential compression for some
initial segment of (2. So we wait for some stage s, a string 7, and
an n such that U(7)[s] = Qs [n with |7| < n — c. Hence
K(Qg [n) <n—c. Let § be such that § ¢ rmgU[s]. Then by the
Church-Turing Thesis we can define M (7) = . Since M is coded in
U by p, there must be a v = pr such that U(pr) = M(7). So |v| =
I7| + |p| = |7| + ¢ <n and U(v) = M(7) = §. Since 6 ¢ rng U|s], it
follows that v ¢ dom U[s|. Since v € domU but v ¢ dom U[s], we
have that 27 contributes to the value of € but not Q,. In other
words, 271" contributes to the value of Q after the s stage; that is,
2= contributes to Q— . Thus Q—, > 2= > 27" which implies
that 27" + Qg < 2. Then in order to get 2 we must add a constant
greater than 27" thus changing the first n bits of {2,. Note that we
do this for every initial segment of (), that may have a potential
compression.

Therefore if we ever have for any n and s,)5 [n is compressible
by more than ¢ bits, then Q [n # Qg [n. Thus if |7| < n — ¢, then
U(T) cannot be Q | n. Hence K (€ [n) cannot be less than n — ¢ as
stated above for K (€ [n). Therefore Vn(K (2 | n) > n — ¢) which
would make €2 1-random.

6.2 The Measure-Theoretic Paradigm

The main idea behind the Measure-Theoretic paradigm is that
random sequences should have no nice, rare properties. In other
words, if we have some way of looking at every possible nice, rare

13

property then a random sequence should not satisfy any of them.
Martin-Lof introduced the test concept; that is, tests that determine
the properties described above.

Definition 6.2.1 (Downey & Reimann, 2007): A Martin-Léf
Test (ML-Test) is a computably enumerable set W C N x 2<% such
that, with W, := {0 : (n,0) € W}, it holds true for every n

p(IWa) = S 2 <2

O'GWn

Observe that the intersection of these sets forms a measure 0 set.
So the niceness of these tests comes from the fact that they are c.e.
while the rareness is because their intersection has measure 0. Now
let A €2¥. A passes the test if

A¢ (Wl

In other words, A passes an ML-test if there is an n such that
Vo € W,,, A ¢ [o]. To get a better idea, let’s look at an example if
A was not random.

Example 6.2.2: Let A = 10100110100101100110.... At first this
seems random, but let’s look at A a little differently!

A=10100110100101...

Notice that every 2 bits has both a 1 and a 0. Clearly this isn’t
random. If we we're to translate this to a test concept, we could say
let W C N x 2<% be a ML test with

W, = {10,01}
W, = {1010, 0101, 1001, 0110}

Taking the measure of each set of extensions

1 1
— 2*|10| 27|01| S - < 271
p([Wh]) + 1 + 17 3°S
1 1 1
W — -0 . o-forol =y D 92
p([W2]) +.+ 16+ +16 1S

14

So each set satisfies the measure condition. Notice that no matter
the pattern of 1’s and 0’s for A if every 2 bits has both a 1 and a 0,
there is surely a o € W, for every n such that A € (), [W,]. Thus
A has this nice property which makes it nonrandom.

Fact 6.2.3 (Nies, 2009): One may uniformly in an index n for a
c.e. open set W obtain a computable antichain X such that [X] =
W,,. Moreover, X is given in the form X = {o;};,«y for N € NU{oo}
where o0; # o, for i # j and |o;| < |04

Next we present a Lemma.

Lemma 6.2.4 (Downey & Hirschfeldt, 2010): Let M be a prefix-
free machine, let £ € N, and Sy = {0 : Ky (o) < |o| — k}. Then
p([Sk]) < 27" u([dom(M)]).

Proof: Note that for every o € Sj, there is a string 7 such that
M(7) =0 and |7| < |o| — k. So |o| > || + k. Therefore

(s =S 27 < ST arharll = 27k ([dom(M)]).

oeS T€dom (M)

Note that if M were universal, then u([Sy]) = 27*u([dom(M)]) =
27F0) < 27% gince Q € [0, 1].

Requests

Before we begin our proof to show that 1-randomness is equiv-
alent to ML-randomness, we must briefly cover a few small topics
before hand so it suffices to bring it up here. We will introduce a
new method of building machines. A request is a pair (r,o) from
N x 2<¢ that asks for a machine M that produces o with a string
of length r. For the purposes of this topic we will be dealing with
c.e. sets of requests rather than computable lists since those could
allow repeats. (Nies, 2009)

For example let W = {(1,101),(2,1101)}. Then we are request-
ing for a machine M where there are strings |7| = 1 and |p| = 2
such that M(7) = 101 and M(p) = 1101.

Definition 6.2.5 (Nies, 2009): Let W C N x 2<“ be a c.e. set of

requests. If
ERET
(r,o)eW

15

for every request in W, then we call W a bounded request set. Fur-
thermore let S C 2<¥. The weight of S given by W is said to be

wgty (S) = Z 27"
(

r,o)eW

provided that ¢ is also in S. The total weight of W is wgty, (2<¢).

Theorem 6.2.6 (Nies, 2009): Machine Existence Theorem
For every bounded request set W, one can computably obtain a
prefix-free machine M, for d > 1 such that Vr,o, (r,o) € W if and
only if there is a string |p| = r such that My(p) = o.

Theorem 6.2.7 [(Downey & Hirschfeldt, 2010), (Nies, 2009)]: A
sequence is ML-random if and only if it is 1-random.

Proof: (=) Let Wy = {0 : K(0) < |o| — k} and define W to be
the c.e. set of pairs (k, o) such that ¢ € Wy. By Lemma 6.2.4 we
have that

p([Wi]) <27*a <27

Therefore W is a ML-test.

Let A € 2¢ be ML-random. Then A ¢ (", [Wx]. So there is a i
such that for every n, A [n ¢ W;. Hence K(A [n) > n —i. Thus
A is 1-random.

(<) Suppose A isn’t ML-random. Then there is a ML-test Y such
that A € (,[Y.]. Note that Y,, can be replaced with Y5, so by defi-
nition of ML-tests u([Y,]) < 272". By fact 6.2.3 we can uniformly in
n obtain a computable antichain X = {o7'},.n, for N, € N[{oc}
such that [Y,] = [X].

Let L = {(Jo?| = n+1,07) : n € N;i < N,,}. Then the weight of
[Y.] given by L

Z 2—|0’;-’L|+7’L—1 — on—1 Z 2—|0'f| < gn—lg=2n _ 9—n—1

O'ZTL €Y, 0'? €Y,

16

Then we can say that

ngtL(Yn) = wgty, (Y1) + wgt, (Y2) + wgt, (Y3) + ...
neN
n 1
8 6
1 / 4
C1—-1/2
1
=-<L
2
Since the weight of L is less than 1, by definition 6.2.5 L is a bounded
request set.
By the Machine Existence Theorem we can build a machine M
with coding constant d for L. Fix b€ Nand let n=b+d+1 —=
—b=—n+1+d. Hence

»M»— VMH

K(o!) < (lof] —n+1)+d=|o;| — 0.

Since A € [Y,], for all n, A extends o} for some i. Thus A isn’t
1-random.

6.3 The Unpredictability Paradigm

The third cornerstone to algorithmic randomness is the idea that
random sequences should not be predictable. The way most people
look at this is in the sense of betting. In other words, one should
not be able to get rich off of something random. Let’s explain with
an example.

Example 6.3.1: Suppose we have the string o = 0011110110101
and we are betting on whether or not the next bit will be 0 or 1. Let
B(o) > 0 be the current capital gained so far and «, 0 < o < B(o)
be the an amount that we wish to bet. Let’s say we wish to bet a on
the next bit being 0. Then B(00) = B(0)+«a and B(cl) = B(o)—a.
Hence we have that

B(00) + B(cl) = B(o) + a+ B(0) — a = 2B(0).

17

Definition 6.3.2: A martingale is a function B : 2<¢ — R2°
that satisfies the equality

B(00) + B(cl) = 2B(0)
for every 2<v.

What we have just done is formalize the concept of a betting
strategy. One advantage to using martingales over Complexity or
ML-tests is that they have algebraic properties as we have just seen.

Let B be a martingale and Z € 2. Then we say that B succeeds
on Z if

B(Z) :=limsup,B(Z [n) = oc.

What this means is that there is no upper bound to our capital
gains i.e. we can get very rich by betting on Z. Let Succ(B) = {Z :
B(Z) = oo}. So intuitively we may think that if some sequence
A € Succ(B), then A surely isn’t random. We will show this in a
later proof. Next we will define a notion that is a little broader than
martingales.

Definition 6.3.3: A supermartingale is a function S : 2<% —
R=Y that satisfies the inequality

25(0) > S(00) + S(o1)
for all o € 2<~.

The idea behind supermartingales is that they are martingales
but with some extra money that the gambler can waste in addition
to gambling with it. Similar to the above results S succeeds on a
sequence Z if S(Z) = limsup,,(Z [n) = oo. Likewise Succ(S) is the
set of sequences that S succeeds on. Note that in a lot of situations
we will say (super)martingales to mean that this applies to both
martingales and supermartingales.

Proposition 6.3.4: Let B be a (super)martingale.
(i) Let 0 € 2<% and S C [o] be prefix-free. Then

Y 27 B(r) < 27 B(0).
TES
(ii) Let U, = {0 : B(o0) > n}. Then
u((o]) < 22,

n

18

Proof of part (i): We will use mathematical induction. Let S be
a prefix-free finite set of extensions of some string o. Note that it
is enough to consider S to be finite. If we were to consider S to be
infinite, then all we need to show is that the limit of the finite cases
holds true.

Base Case: Suppose |S| = 1. If 7 € S, then there is some p € 2<%
such that 7 = gp. Hence |7| > |o|. Thus

> 27 7B(r) =27MB(r) = 27127 B(0p)
TES

Recall by definition of (super)martingales
B(c) > 27 B(00) + B(a1)].
For example,
B(o) > 27'B(c0) > 272B(c00)...
So at some point 27"\B(op) < B(o). Hence 2719127 PIB(5p) <
27191B(0). Thus > 427" B(r) < 271°IB(0) if S has only 1 ele-

ment.

Inductive Hypothesis: Let’s assume it is true that if |S| = n, then

Y 27 B(r) < 27 B(0).

TES

Inductive Step: Suppose |S| = n+ 1. Let p be the longest string
such that every element in S extends p. So if 7 € S, then 7 extends p.
Thus |7| > |p|. Now let S; = {7 € S : 7 extends pi} with i € {0, 1}.
Then |S;| < |S| since S; is restricted to less extensions. Thus by the
inductive hypothesis

> 27MB(r) < 271 B(pi).

TESZ‘

Note that 2717 B(pi) = 21D B(pi) < 2711 (B(p0) + B(pl)) =
271271Pl(B(p0)+B(p1)). We know this to be true since B(pi) is either
B(p0) or B(pl). Thus B(pi) < B(p0)+ B(pl). By the definition of
(super)martingale

27 1271Pl(B(p0) + B(p1)) < 27 B(p).

19

Hence we have that 27171 B(pi) < 271PIB(p). Lastly we have that
|p| > |o|. Thus by the base case, we have that

2711 B(p) < 27191 B(0).

Thus Y, ¢ 27" B(r) < 2711 B(pi) < 271PIB(p) < 2711 B(0).
Proof of part (ii): Let U, = {0 : B(o) > n}. Let P C U, be a
prefix-free set such that [P] = [U,]. Then

p([P]) = Y27 < - S o By,

TeEP TeEP

We know this to be true by the way U, is defined above. By the
result in part (i) with o = A we have that

EZQ—\TIB(T) < 2-MB(\) _ B()\)‘

n n
TES

Thus u([P]) = p(10,]) < 2.

In order to define randomness in the sense of martingales, we
must first restrict our class of martingales to c.e. martingales. A
(super)martingale is computably enumerable in the sense of defini-
tion 3.6.1.

Theorem 6.3.5: A set is ML-random if and only if no c.e. (su-
per)martingale succeeds on it.

Proof: (=) Let B be a c.e. (super)martingale. Without loss of
generality we may assume B(\) = 1. Let W,, = {0 : B(o) > 2"}
with W C N x 2<¢ being the c.e. set of tuples (n,0) for ¢ € W,,.
Then by the second part of proposition 6.3.4

B(A) 1
u(wa) < B0 =
So p([W,]) <27 Hence W is a ML-test.

Suppose A € 2¢ is ML-random. Then A ¢ (), W,. Therefore
A ¢ Succ(B). Since B could be any c.e. (super)martingale, A isn’t
in the success set of any c.e. (super)martingale.

(<) Let U C N x 2<¢ be a ML-test with U, = {0 : (n,0) € U}.
We will assume that each U, is prefix-free. Define B, as follows.

20

Whenever ¢ enters U,, add 1 to the value of B,,(7) if 7 = ¢, and add
2l7=lel if o = 7. So

By(r)=> 1+ > 2"l

occUn ocUn

T>=0 o-T
Do note that only one of these sums will ever happens and if the
left sum happens, then it only happens once since we are assuming
each U, is prefix-free. So a better way to define B,, would be as a
piece-wise function.

1 do € U,(1 = 0)
Bu(r) =141 3 2=l otherwise
0'0—€>_l£_n

Claim: B, is a martingale

Proof of claim: Let B,, be defined as above.

Case 1: Suppose there is a ¢ € U, such that 7 extends o. Then
B, (1) = 1. Note that 70 and 71 also extend o. So B, (70) =1 and
B, (11) = 1. Therefore by definition of martingales

Bo(10)+ B,(71) =1+1=2=2%1=2B,(7).

Case 2: Suppose there is a ¢ € U, such that ¢ > 7. Then

Bu(r) = " aii-lel

UeUn
o-T

Since o is a proper extension of 7, o has the potential to be 70 or
71. So we can separate the above summation as follows.

§ ol = §7 il §7 oot

oeUn oeU, 70U,
o7 o710 T1leU,
or o>-T71

Note that we have 27! for the right summation since —1 = |7| — |70|
and —1 = |7| — |71| depending on whichever may be in U,.
Next observe that

B,(70) = Y 2"kl N

oecUy, T0€U,
o710

21

and

B,(r1) =Y 2t 4 3"

ocU, T1eU,
o>11

by the way we defined B,, above. Therefore

B,(70)+ By(r1) = > 2tFitlelp N

oeU, T0eU,
o>10 or T1€U,
or o711
—9 E 2ll=lel 4 9 E 91
oceUy T0€U,
o710 or T1€U,
or o711
= 2B,(7).

Thus B, is a martingale.

We have not proved this result but the function B =) _ B, is
also a martingale. It is also easy to see that the B, are c.e. in the
sense of definition 3.6.1 since they are approximated from below.
From this we can also see that B is a c.e. martingale as well. So we
have that B is a c.e. martingale.

Suppose A € 2% isn’t ML-random. Then A € N [U,]. So for
every k, there is an m such that U, contains A | m. So for the
martingale B built up from said test we have that Bi(A | m) = 1.
Since for every n, [Un41] C [U,], we have that for any n < k,
[Ux] € [Un]. Therefore there is a o € U, such that A | m = o.
Thus B, (A [m) = 1. So we have that

Therefore B(A [m) > k and hence limsup,, B(A | m) = co.

7 Summary

What we have just shown is that the three most accepted under-
standings of randomness are all logically equivalent. So we have the
following theorem.

22

Theorem 7.1.1: Let A € 2¥. The following statements are equiv-
alent:

i) A is l-random,
ii) A is ML-random,
iii) No c.e. (super)martingale succeeds on A.

There are many other definitions and interpretations of random-
ness, but none can be comparative like these three. However there
is one drawback to defining randomness. Recall back to Chaitin’s €.
Intuitively it doesn’t seem random since there is a pretty nice way to
describe it. Yet it satisfies these definitions of randomness. Well as it
turns out the more we try to define and parameterize randomness,
the further we get from true randomness.

23

8 Bibliography

e Weber, Rebecca. Computability Theory. American Mathemat-
ical Society, 2012.

e Downey, R.G.& Hirschfeldt, D.R. Algorithmic Randomness and
Complezity. Springer, 2010.

e Nies, André. Computability and Randomness. Oxford Univer-
sity Press. 2009.

e Brodkorb, Laurel. The Entscheidungsproblem and Alan Tur-
ing. gesu.edu. 2019.

e Downey, R.G. & Reimann, Jan. Algorithmic Randomness. schol-
arpedia.org. 2007.

24

