

Application of Monte Carlo Integrals

 ​By Hani Al-Sharif
A Capstone paper submitted to Georgia College and State
University in partial fulfillment of the requirements for the

degree of Bachelor of Science in Mathematics

Milledgeville, Georgia

Advisor: Dr. Jebessa Mijena

Table of Contents

Acknowledgment 2

Abstract 3

Introduction 4

Application 5
Estimating 5

Estimating - with a Limited Sample Size () 5
Estimating - with a Greater Sample Size () 6

Monte Carlo Integration 9

Examples 10
Example 1: Normal Distribution Curve 10
Example 2: Integral of Difficulty 12

Code: Integral of Difficulty 12
Code: Triple Integral of Difficulty 14

Example 4: Batman Curve 15

Conclusion 18

References 19

1

https://www.codecogs.com/eqnedit.php?latex=%5Cpi%0
https://www.codecogs.com/eqnedit.php?latex=N%20%3D%201000%0
https://www.codecogs.com/eqnedit.php?latex=N%20%3D%2010%5E6%0

Acknowledgment

Thanks to my advisor, Dr. Mijena, who has been a great advisor, who was ever patient

and guided me continuously during the entire process. Dr. Mijena made this a fun and

exciting task and shared my enthusiasm with me, which i must say is contagious. This

research that has sparked a new passion in a field of mathematics I have never delved into

before. Once starting this research it became apparent how practical it’s uses would be

especially in other areas that I study, such as my physics research. I’d also like to extend my

gratitude to Matthew Dallas a classmate and friend who attempted to keep me focused and

continued to remind me of my responsibilities as a research student.

2

Abstract

Monte Carlo simulation (MCS) is a stochastic process that utilizes random sampling

to provide numerical approximations, the use of which varies from financial firms trying to

predict the stock market to engineers determining how they should design their systems in

regard to society’s erratic nature. This research demonstrates the use of MCS in the topic of

integration transforming tedious and time-consuming integrands into a body of code that

provides a very good approximation to integrals.

3

Introduction

You’re looking at an enigma of a problem, no solution presents itself using standard

methods. This is where Monte Carlo Simulation comes to play. A tool whose specific

purpose is to produce such good approximation that they can be taken as concrete solutions.

The origins of Monte Carlo Simulation, harken back to the 1940s and 1950s during the

development of Nuclear bombs in the Manhattan Project. After MCS’s success in that region

of Physics its use was spread further and further, into other regions of application such as

Engineering and Economics. Today MCS has a strong presence in Risk Assessment and

Stock Analysis as it is fundamentally based in Randomness for which both of these systems

are thrive. Essentially Monte Carlo Simulation, takes a collection of random variables

(usually of considerable size) and computes them through a process designed for the

problem and produces either a specific result or a combination of paths that are likely to

occur given the conditions. Our use of Monte Carlo is focused on Integral approximation, in

order to assess typically unsolvable integrals. Of course, simple problems will be covered

only to move to something that could only come from a comic book, literally.

4

Application

In order to apply Monte Carlo Simulation, it is necessary to use a programming

language; in this research we used Python due to its versatility as a code and its large number

of at ready libraries. With every example the code used to provide their respective estimates

will be provided. A key point to observe is that a majority of the actual calculation is only a

few lines whereas the rest is part of providing a visual for the user.

Estimating Pi

Estimating - with a Limited Sample ˊ

Size ()

Finding is a very common example

used to demonstrate how effective Monte

Carlo Simulation can be, this is because of the

simplicity of the problem and its solution.

Imagine having a square in a sand-pit, and then

placing a hoolahoop inside of this square so

that the circle is tangent with the four sides of the square. What we then do is take a

thousand marbles and scatter them at random, after counting the ratio in the square vs in

the circle we can determine the area of the circle. A visual can be see in above. Doing this

5

https://www.codecogs.com/eqnedit.php?latex=N%20%3D%201000%0
https://www.codecogs.com/eqnedit.php?latex=%5Cpi%0

with a limited number of points will have an error that is based on the sample size, there for

it is better to use a greater sample size; this will be further discussed later on. However, once

we have our points counted we can use the ratio of areas to determine an approximation of

.

Ratio of Areas

The approximation is close but not enough that it could be deemed a success, this can be

remedied by increasing the sample size to a million or higher.

Estimating - with a Greater Sample Size ()ˊ

Since we want greater accuracy and

precision we’ll run the same program with a greater

sampling size N. Doing this we’ll give an

approximation with more decimal places and

greater accuracy. Again this is due to the nature of

Monte Carlo Simulation as a statistical process. On

the figure to the right it is evident how a vastly

larger sample size will produce a more accurate

approximation. Our estimation for with is , We could further increase
 ˊ 0 N = 1 6

the accuracy by increasing our value for N

6

https://www.codecogs.com/eqnedit.php?latex=%5Cpi%0
https://www.codecogs.com/eqnedit.php?latex=N%20%3D%2010%5E6%0
https://www.codecogs.com/eqnedit.php?latex=3.140432%0

Code: Estimating ˊ
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 8)) # set the figure size
Calculate the radius of cirlce with radius
radius = 1
N = 1000000 # Use 10000 points
np.random.seed(69)
X = np.random.uniform(low=-radius, high=radius, size=N) # Random numbers from -1 to 1
Y = np.random.uniform(low=-radius, high=radius, size=N)
plt.scatter(X, Y, c='red', s=0.9, alpha=0.9, label=u'outside points')
drawing a circle
crc = plt.Circle([0, 0], radius=radius, alpha=0.1)
fig = plt.gcf()
fig.gca().add_artist(crc)
calculate the distance from the center
R = np.sqrt(X ** 2 + Y ** 2);
plt.scatter(X[R < radius], Y[R < radius], c='Blue', s=0.9, alpha=0.9, label=u'Inside points')
Abox = (1 * radius) ** 1 # This is the big box
Ninside = 0
Noutside = 0
for i in np.arange(0, N):
 if R[i] <= 1:
 Ninside = Ninside + 1
 else:
 Noutside = Noutside + 1
Alternative and faster
Ninside = np.sum(R < radius)
Area = Abox * Ninside / N
plt.legend()
plt.text(-0.125,0, Ninside, fontsize=20, color ='black')
plt.text(-1, 1.11, 'Total number of points = {}'.format(N), fontsize =20)
Area = Abox * Ninside/(Noutside+Ninside)
print ("Area=", Area, "pi=", 4*(Area / radius ** 2))
Picture = plt.show()
calculate the distance from the center
R = np.sqrt(X ** 2 + Y ** 2);

7

plt.scatter(X[R < radius], Y[R < radius], c='Blue', s=0.9, alpha=0.9, label=u'Inside points')
Abox = (1 * radius) ** 1 # This is the big box
Ninside = 0
Noutside = 0
for i in np.arange(0, N):
 if R[i] <= 1:
 Ninside = Ninside + 1
 else:
 Noutside = Noutside + 1
Alternative and faster
Ninside = np.sum(R < radius)
Area = Abox * Ninside / N
plt.legend()
plt.text(-0.125,0, Ninside, fontsize=20, color ='black')
plt.text(-1, 1.11, 'Total number of points = {}'.format(N), fontsize =20)
Area = Abox * Ninside/(Noutside+Ninside)
print ("Area=", Area, "pi=", 4*(Area / radius ** 2))
Picture = plt.show()

8

Monte Carlo Integration

Essentially we want to estimate:

To do this we have to randomly sample values from , and then evaluate, x , ... , x x1 2 n a,][b

those values using for which is the area of a rectangle with heightb) (x)(ī a Ā f i , .. , n i = 1 .

and a width and then find the average of these areas such that,(x)f i b)(ī a

, which will be our approximation.b) b) verage (f)In = n

(bīa) (x)×
n

i=1
f i

= (ī a Ā n

(x)×
n

i=1
f i

= (ī a Ā A

And so Monte Carlo Integration has specific properties that allow for the approximations to

be used consistently. These being that,

● Monte Carlo Estimation is consistent

 P [] 1 lim
nŸÐ

In = I =

● Monte Carlo Estimates are unbiased

 Expected Value of E[I] In : n = I

9

● The rate of convergence is proportional to . That is,

1
ãn

 td(I)S n ~ 1
ãn

Examples

 Example 1: Normal Distribution Curve

The estimate of the probability of standard normal distribution between -3 and 3 is

estimated to be 0.997625 with .0N = 1 6

This estimation if very strong when compared to the standard used values of the Normal

Distribution Curve from -3 to 3.

Code: Normal Distribution Curve
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon

def f(x):

10

 return (1/np.sqrt((2*np.pi)))*np.exp(-((x**2)/2))
aString = input("Enter first bound: ")
a = float(aString)
bString = input("Enter second bound: ")
b = float(bString)

use N draws
N= 1000000
X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b
Y =f(X) # CALCULATE THE f(x)
Value= (b-a) * np.sum(Y)/ N;

x = np.linspace(a,b)
y =f(x)

fig, ax = plt.subplots()
plt.plot(x, y, 'Red', linewidth=1.5)
plt.ylim(ymin=0)
print ("The MC Estimation is ", Value)
Make the shaded region
ix = np.linspace(a, b)
iy = f(ix)
verts = [(a, 0)] + list(zip(ix, iy)) + [(b, 0)]
poly = Polygon(verts, facecolor='0.5', edgecolor='0.5', color='RoyalBlue')

ax.add_patch(poly)
plt.text(3, 0.3, r"$\int_a^b \frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}\mathrm{d}x$",
 horizontalalignment='center', fontsize=20)
plt.text((0.4*(a+b)),0.05, round(Value,6), fontsize=15)
plt.figtext(0.9, 0.005, 'x')
plt.figtext(0.5, 0.95, 'y')

ax.spines['left'].set_position(('data', 0.0))
ax.spines['bottom'].set_position(('data', 0.0))
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')

ax.set_xticks([-4,-3,-2,-1,0,1,2,3,4])
ax.set_yticks([0,0.1,0.2,0.3,0.4,0.5])

plt.show()

11

