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Abstract 

Monte Carlo simulation (MCS) is a stochastic process that utilizes random sampling 

to provide numerical approximations, the use of which varies from financial firms trying to 

predict the stock market to engineers determining how they should design their systems in 

regard to society’s erratic nature. This research demonstrates the use of MCS in the topic of 

integration transforming tedious and time-consuming integrands into a body of code that 

provides a very good approximation to integrals.  
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Introduction 

You’re looking at an enigma of a problem, no solution presents itself using standard 

methods. This is where Monte Carlo Simulation comes to play. A tool whose specific 

purpose is to produce such good approximation that they can be taken as concrete solutions. 

The origins of Monte Carlo Simulation, harken back to the 1940s and 1950s during the 

development of Nuclear bombs in the Manhattan Project. After MCS’s success in that region 

of Physics its use was spread further and further, into other regions of application such as 

Engineering and Economics. Today MCS has a strong presence in Risk Assessment and 

Stock Analysis as it is fundamentally based in Randomness for which both of these systems 

are thrive. Essentially Monte Carlo Simulation, takes a collection of random variables 

(usually of considerable size) and computes them through a process designed for the 

problem and produces either a specific result or a combination of paths that are likely to 

occur given the conditions. Our use of Monte Carlo is focused on Integral approximation, in 

order to assess typically unsolvable integrals. Of course, simple problems will be covered 

only to move to something that could only come from a comic book, literally. 
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Application 

In order to apply Monte Carlo Simulation, it is necessary to use a programming 

language; in this research we used Python due to its versatility as a code and its large number 

of at ready libraries. With every example the code used to provide their respective estimates 

will be provided. A key point to observe is that a majority of the actual calculation is only a 

few lines whereas the rest is part of providing a visual for the user.  

Estimating Pi  

Estimating - with a Limited Sample ˊ  

Size ( ) 

Finding  is a very common example 

used to demonstrate how effective Monte 

Carlo Simulation can be, this is because of the 

simplicity of the problem and its solution. 

Imagine having a square in a sand-pit, and then 

placing a hoolahoop inside of this square so 

that the circle is tangent with the four sides of the square. What we then do is take a 

thousand marbles and scatter them at random, after counting the ratio in the square vs in 

the circle we can determine the area of the circle. A visual can be see in above. Doing this 
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with a limited number of points will have an error that is based on the sample size, there for 

it is better to use a greater sample size; this will be further discussed later on. However, once 

we have our points counted we can use the ratio of areas to determine an approximation of 

.  

Ratio of Areas 

  

The approximation is close but not enough that it could be deemed a success, this can be 

remedied by increasing the sample size to a million or higher. 

Estimating - with a Greater Sample Size ( )ˊ  

Since we want greater accuracy and 

precision we’ll run the same program with a greater 

sampling size N. Doing this we’ll give an 

approximation with more decimal places and 

greater accuracy. Again this is due to the nature of 

Monte Carlo Simulation as a statistical process. On 

the figure to the right it is evident how a vastly 

larger sample size will produce a more accurate 

approximation. Our estimation for  with is , We could further increase
 ˊ 0  N = 1 6  

the accuracy by increasing our value for N   
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Code: Estimating  ˊ    
import numpy as np 
import matplotlib.pyplot as plt 
plt.figure(figsize=(8, 8))  # set the figure size 
# Calculate the radius of cirlce with radius 
radius = 1 
N = 1000000  # Use 10000 points 
np.random.seed(69) 
X = np.random.uniform(low=-radius, high=radius, size=N)  # Random numbers from -1 to 1 
Y = np.random.uniform(low=-radius, high=radius, size=N) 
plt.scatter(X, Y, c='red', s=0.9, alpha=0.9, label=u'outside points' ) 
# drawing a circle 
crc = plt.Circle([0, 0], radius=radius, alpha=0.1) 
fig = plt.gcf() 
fig.gca().add_artist(crc) 
# calculate the distance from the center 
R = np.sqrt(X ** 2 + Y ** 2); 
plt.scatter(X[R < radius], Y[R < radius], c='Blue', s=0.9, alpha=0.9, label=u'Inside points') 
Abox = (1 * radius) ** 1  # This is the big box 
Ninside = 0 
Noutside = 0 
for i in np.arange(0, N): 
    if R[i] <= 1: 
        Ninside = Ninside + 1 
    else: 
        Noutside = Noutside + 1 
# Alternative and faster 
Ninside = np.sum(R < radius) 
Area = Abox * Ninside / N 
plt.legend() 
plt.text(-0.125,0, Ninside, fontsize=20, color ='black') 
plt.text(-1, 1.11, 'Total number of points = {}'.format(N), fontsize =20) 
# Area = Abox * Ninside/(Noutside+Ninside) 
print ("Area=", Area, "pi=", 4*(Area / radius ** 2)) 
Picture = plt.show() 
# calculate the distance from the center 
R = np.sqrt(X ** 2 + Y ** 2); 
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plt.scatter(X[R < radius], Y[R < radius], c='Blue', s=0.9, alpha=0.9, label=u'Inside points') 
Abox = (1 * radius) ** 1  # This is the big box 
Ninside = 0 
Noutside = 0 
for i in np.arange(0, N): 
    if R[i] <= 1: 
        Ninside = Ninside + 1 
    else: 
        Noutside = Noutside + 1 
# Alternative and faster 
Ninside = np.sum(R < radius) 
Area = Abox * Ninside / N 
plt.legend() 
plt.text(-0.125,0, Ninside, fontsize=20, color ='black') 
plt.text(-1, 1.11, 'Total number of points = {}'.format(N), fontsize =20) 
# Area = Abox * Ninside/(Noutside+Ninside) 
print ("Area=", Area, "pi=", 4*(Area / radius ** 2)) 
Picture = plt.show() 
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Monte Carlo Integration 

Essentially we want to estimate: 

To do this we have to randomly sample values from , and then evaluate, x , ... , x  x1  2   n a, ][ b  

those values using  for which is the area of a rectangle with   heightb ) (x )( ī a Ā f i , .. , n  i = 1 .   

and a width   and then find the average of these areas such that,(x )f i b )( ī a  

, which will be our approximation.b ) b ) verage (f )In = n

(bīa) (x )×
n

i=1
f i

= ( ī a Ā n

(x )×
n

i=1
f i

= ( ī a Ā A

And so Monte Carlo Integration has specific properties that allow for the approximations to 

be used consistently. These being that, 

● Monte Carlo Estimation is consistent 

  P [ ] 1   lim
nŸÐ

In = I =   

● Monte Carlo Estimates are unbiased  

            Expected Value of E[I ]  In :  n = I  
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● The rate of convergence is proportional to . That is,

1
ãn  

       td(I )S n ~ 1
ãn   

Examples 

 Example 1:  Normal Distribution Curve 

 

 

 

 

 

The estimate of the probability of standard normal distribution between -3 and 3 is 

estimated to be 0.997625 with .0N = 1 6   

This estimation if very strong when compared to the standard used values of the Normal 

Distribution Curve from -3 to 3. 

 

Code: Normal Distribution Curve 
import numpy as np 
import matplotlib.pyplot as plt 
from matplotlib.patches import Polygon 
 
def f(x): 
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    return (1/np.sqrt((2*np.pi)))*np.exp(-((x**2)/2)) 
aString = input("Enter first bound: ") 
a = float(aString) 
bString = input("Enter second bound: ") 
b = float(bString) 
 
# use N draws 
N= 1000000 
X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b 
Y =f(X)   # CALCULATE THE f(x) 
Value= (b-a) * np.sum(Y)/ N; 
 
x = np.linspace(a,b) 
y =f(x) 
 
fig, ax = plt.subplots() 
plt.plot(x, y, 'Red', linewidth=1.5) 
plt.ylim(ymin=0) 
print ("The MC Estimation is ", Value) 
# Make the shaded region 
ix = np.linspace(a, b) 
iy = f(ix) 
verts = [(a, 0)] + list(zip(ix, iy)) + [(b, 0)] 
poly = Polygon(verts, facecolor='0.5', edgecolor='0.5', color='RoyalBlue') 
 
ax.add_patch(poly) 
plt.text(3, 0.3, r"$\int_a^b \frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}\mathrm{d}x$", 
         horizontalalignment='center', fontsize=20) 
plt.text((0.4*(a+b)),0.05, round(Value,6), fontsize=15) 
plt.figtext(0.9, 0.005, '$x$') 
plt.figtext(0.5, 0.95, '$y$') 
 
ax.spines['left'].set_position(('data', 0.0)) 
ax.spines['bottom'].set_position(('data', 0.0)) 
ax.spines['right'].set_color('none') 
ax.spines['top'].set_color('none') 
 
ax.set_xticks([-4,-3,-2,-1,0,1,2,3,4]) 
ax.set_yticks([0,0.1,0.2,0.3,0.4,0.5]) 
 
plt.show() 
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