MODELING STUDENT ACHIEVEMENT USING LINEAR AND NONLINEAR MODELS

RYAN LAWSON (WITH DR. JEBESSA MIJENA)

ABSTRACT. Linear regression models are widely used to make predictions based on data. In this paper, we use linear as well as nonlinear models to fit and predict standardized test results of various high schools in Georgia, using the average teacher salary, student-to-classroom ratio, and student-to-computer ratio as predictors. We develop and test predictor models using polynomial, spline, stepwise, ridge, and LASSO regression methods. We compared the performance of these models with respect to mean square error of test data for each standardized test. We find that stepwise regression works quite well for most of the subject tests, but in the case of 9th Grade Literature & Composition, the nonlinear LASSO model gives us less overall mean square error on test data set.

Submitted to the Faculty of the Department of Mathematics in partial fulfillment of the requirements for the degree of Bachelor of Science

Georgia College & State University
2014

Date: 22 November 2014.
1. **Introduction**

Educational institutions typically use standardized tests to determine how much students have learned. In Georgia, certain high school courses use a standardized End-of-Course Test to fulfill this purpose.

Our goal in this study is to build a predictive model that allows us to estimate student achievement on a standardized test as determined by three factors: the school’s student-classroom ratio, student-computer ratio, and the average teacher salary in the district.

2. **Background**

It is necessary to introduce some concepts from an area of statistics called regression analysis.

2.1. **Introducing Regression.** Regression analysis is used to predict one or more variables of a dataset in terms of the other(s). For example, say we want to predict a student’s GPA based on the hours of sleep they get each night. We have a dataset containing a predictor variable (hours of sleep) and a response variable (GPA). The general form of the model is given by

\[y = E(y) + \epsilon \]

where \(y \) is the predictor, \(E(y) \) is a response equation, and \(\epsilon \) is an error term (which we seek to minimize). The general form of the response equation \(E(y) \) is determined by the type of regression we are using.

2.2. **Types of Regression Models.**

Multiple Linear Regression: Here

\[E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n + \beta_{n+1} x_i x_j \]

where \(y \) is our response variable, \(x_1, ..., x_n \) are our predictor variables, \(i \) and \(j \) are integers with \(i \neq j \), and \(\beta_0, \beta_1, ..., \beta_{n+1} \) are coefficients (or weights) that are determined using the Method of Least Squares. The last term \(\beta_{n+1} x_i x_j \) is called an interaction term and is used whenever we want to account for variables that are highly correlated.
Polynomial Regression: Here

\[E(y) = \beta_0 + \beta_1 x_1 + \beta_1 x_1^2 + ... + \beta_1 x_1^p + \beta_2 x_2 + \beta_2 x_2^2 + ... + \beta_n x_n^s \]

This model is still linear in parameter \(\beta_i \)'s, and can be used for scatter plots that show data following a more curved path.

Spline (or Piecewise) Regression: In smoothing spline regression, we separate our data into \(n \) intervals and we generate a line of best fit for the data in each interval. The result is a piecewise-defined function that fits our data with \(n \) degrees of freedom. The points at which the data is split are called knot values. The equation for three intervals is given by

\[E(y) = \beta_0 + \beta_1 x_1 + \beta_2 (x_1 - k_1)x_2 + \beta_3 (x_1 - k_2)x_3 \]

where \(k_1 \) and \(k_2 \) are knot values, \(x_1 \) is our independent variable, \(k_1 < k_2 \), and \(x_2 \) and \(x_3 \) are defined as follows:

\[x_2 = \begin{cases} 1 & \text{if } x_1 > k_1 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad x_3 = \begin{cases} 1 & \text{if } x_1 > k_2 \\ 0 & \text{otherwise} \end{cases} \]

We can extend this equation to more intervals, or even incorporate nonlinear terms. The point of spline regression is to compensate for shifts in a regression model, or any intervals of discontinuity in the scatter plot.
3. Data Collection

We collected certain data from public high schools in Georgia. All of these datasets are available online. Refer to the References page for specific links to the datasets.

3.1. Gathering Data. The variables used in our model are as follows:

- **EOCT Score Reports:** We obtained data on Georgia End-of-Course Tests for each subject area (English, math, science, and social science), further broken down into demographics, e.g., students who were reported being white, black, and/or economically disadvantaged. The values in the score reports represent the percentage of students who met or exceeded the state’s benchmark for each test.

- **Student-Computer Ratio:** We wanted to consider the effect of technology on student success. Each year, school districts report their schools’ technology inventory to the state department. This data is, again, available on the GaDOE website. Part of the inventory seeks to find the student-computer ratio. The term “modern computer” is defined by the state and must meet certain specifications (processor speed, memory capacity, etc.). In any case, the ratio obtained gives us an indication of how much technology is used in the classroom, and how much access a student has to that technology. A sample report is included in the appendix.

- **Student-Classroom Ratio:** This ratio was calculated using the technology inventory reports. The reports include a count of the classrooms and the student population. We find the ratio by dividing the population by the number of classrooms.

- **Average Teacher Salary:** Salaries of public servants are a matter of public record. There has been some discussion of “pay for performance” initiatives, whereby teachers would be paid more, or perhaps even penalized, based on how well their students perform (or how poorly). In light of these discussions, we decided to include average teacher salary as a possible factor in student achievement.

3.2. Cleaning Methods. The first thing we had to do after gathering our data was to put it in a form that we could feasibly use (particularly with R). Essentially we had to take these distinct spreadsheets (or, in the case of the technology reports, PDF files) and merge them into one dataset. There were a few challenges that we faced in this endeavor that warrant mention, but the most prolific challenge was
filling in the massive holes in the score reports. Holes occurred when data was not reported to the state or if there were too few test-takers in a particular demographic (for instance, we wanted to include Latino students as another demographic, but were unable to do so because there were too many holes in the dataset).

We decided to clean this data using a four-step process:

1. If a row (school) contained too many missing parts (particularly in an “all” category), we dropped the row. We started with 490 schools in our dataset, and we ended up dropping around 100 of them. We tried to limit the number of schools we dropped. One exception is the Atlanta Public School System. We dropped that entire district due to both massive holes, and allegation of cheating (or test tampering) on standardized tests from previous years.

2. If a test score was missing for an individual school in a district with more than one high school, we replaced the missing value with the average of the other schools in the district.

3. If a test score was missing for an individual school in a district where it is the only high school, we replaced the missing value with the state average.

4. If we were missing a technology report from a certain school, we replaced the missing value with data from the previous year (the 2011-2012 school year).

This is a “before” snapshot of the dataset:
3.3. Final Draft. The final draft of the dataset contained the following variables:

- **Predictors**
 - AVG.SALARY: Average Teacher Salary
 - TECH.RATIO: Student-Computer Ratio
 - CR.RATIO: Student-Classroom Ratio

- **Responses**
 - X9LIT: Scores for 9th Grade Literature and Composition
 - AMLIT: Scores for American Literature and Composition
 - MATH1: Scores for Mathematics I
 - MATH2: Scores for Mathematics II
 - B10: Scores for Biology
 - PHYS: Scores for Physical Science
 - USH: Scores for United States History
 - ECON: Scores for Economics
4. Exploratory Analysis

Visual representations of the data are provided in the appendix. The table below summarizes our numerical measures.

<table>
<thead>
<tr>
<th>Predictor/Response</th>
<th>Minimum</th>
<th>Median</th>
<th>Mean</th>
<th>Maximum</th>
<th>SD (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG.SALARY</td>
<td>22,504</td>
<td>47,518</td>
<td>47,733</td>
<td>57,278</td>
<td>4,169.858</td>
</tr>
<tr>
<td>TECH.RATIO</td>
<td>0.000</td>
<td>2.080</td>
<td>2.223</td>
<td>10.210</td>
<td>1.099391</td>
</tr>
<tr>
<td>CR.RATIO</td>
<td>6.22</td>
<td>16.79</td>
<td>16.49</td>
<td>39.76</td>
<td>3.45684</td>
</tr>
<tr>
<td>X9LIT</td>
<td>42.90</td>
<td>84.65</td>
<td>83.95</td>
<td>100.00</td>
<td>9.685169</td>
</tr>
<tr>
<td>AMLIT</td>
<td>47.20</td>
<td>89.55</td>
<td>88.46</td>
<td>100.00</td>
<td>7.618085</td>
</tr>
<tr>
<td>MATH1</td>
<td>7.40</td>
<td>66.70</td>
<td>65.36</td>
<td>100.00</td>
<td>17.50276</td>
</tr>
<tr>
<td>MATH2</td>
<td>10.50</td>
<td>58.50</td>
<td>59.18</td>
<td>100.00</td>
<td>19.6544</td>
</tr>
<tr>
<td>BIO</td>
<td>18.90</td>
<td>74.00</td>
<td>72.58</td>
<td>100.00</td>
<td>15.12471</td>
</tr>
<tr>
<td>PHYS</td>
<td>34.40</td>
<td>77.75</td>
<td>77.82</td>
<td>100.00</td>
<td>14.50959</td>
</tr>
<tr>
<td>USH</td>
<td>13.00</td>
<td>68.30</td>
<td>67.13</td>
<td>100.00</td>
<td>17.1142</td>
</tr>
<tr>
<td>ECON</td>
<td>26.90</td>
<td>77.70</td>
<td>75.47</td>
<td>100.00</td>
<td>14.89702</td>
</tr>
</tbody>
</table>

5. Model Testing

We tested each of our regression models using cross validation, which is done by randomly splitting our dataset into two groups: a training section and a testing section. Our training section (which contained 248 observations) was used to fit the model. The testing section (containing 122 observations) was used to test the models. We used the Root Mean Squared Error to determine how effective our models were at predicting responses. Specifically,

$$\text{RMSE} = \sqrt{\frac{\sum(y - \hat{y})^2}{122}}$$

where y is our actual response, \hat{y} is the predicted response.

6. Regression Models

During our analysis we considered four types of models, explained below:

Note: We define the following denotations for the purposes of simplicity.

- $A = \text{AVG.SALARY}$
- $T = \text{TECH.RATIO}$
- $C = \text{CR.RATIO}$
6.1. **Stepwise Regression:** The stepwise regression process involves taking a large general model and dropping variables that do not significantly contribute to the model predictions. One variable is dropped at a time, and the remaining variables are tested using ANOVA to determine the model’s overall effectiveness. Stepwise regression seeks to minimize the objective function

\[\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \]

We applied stepwise regression to our largest polynomial model

\[A^3 + A^2 + A + T^3 + T^2 + T + C^3 + C^2 + C + AT + AC + CT + ACT \]

and arrived at the more efficient models, given below.

X9LIT: 80 − .0003A + 6.14T − 1.81C + .00006AC − .28CT

AMLIT: 106 − .0005A + .78T − 2.36C + .00005AC

MATH1: 3.35 + .00094A + 1.74T + .87C

MATH2: 157 − .003A + 13T − 11C + .00027AC − .76CT

BIO: 105 − .001A + 11T − 5.45C + .0002AC − .58CT

PHYS: 42 + .00076A

USH: 78 − .0008A + 8.69T − 4.4C + .0001AC − .42CT

ECON: 50 − .00006A + 46T − 4C + .0001AC − .0007AT − .53CT

We make two assumptions about our models: (1) that the error associated with each model is normally distributed with a mean \(\mu = 0 \), and (2) that the variance of the error remains constant. We can check our assumptions by examining the two plots on the following page.
The first plot allows us to verify our normality assumption. In particular, the more the individual plots adhere to the dotted line, the more normally the error is distributed. The second plot provides verification of our assumed constant variance. To put it simply, the straighter the red line, the more constant the variance. It should be clear that, *en masse*, our assumptions are satisfied. There are outliers which will affect our normality assumption, particularly at the lower end of the plot, but overall the assumptions hold.
6.2. **Smoothing Splines**: Spline regression works well if you know where the knots should occur in the dataset. However, smoothing splines make this a nonissue by choosing a maximal set of knots. More specifically, smoothing spline regression seeks to find a function \(f(x) \) that minimizes

\[
\sum_{i=1}^{n} [y_i - f(x_i)]^2 + \lambda \int [f''(t)]^2 \, dt
\]

where \(\lambda \geq 0 \) is a fixed *smoothing parameter* and \(f(x) \) is twice differentiable. We allow R to generate our function numerically using ten-fold cross-validation. For smoothing splines, we used our complete model again:

\[
A^3 + A^2 + A + T^3 + T^2 + T + C^3 + C^2 + C + AT + AC + CT + ACT
\]

We can see our functions by plotting the smooth spline model. The model for Economics is given on the following page. Further models are provided in the appendix.

One consequence of smoothing splines is **overfitting**. Our model may work well for the training data, but then may perform poorly on the test data. If overfitting occurs, this means our model is not generalizable, and therefore not useful outside of the context of our dataset.
6.3. **Ridge Regression: Multicollinearity** is a condition wherein there is a correlation between two or more independent variables. This translates to instability and bias in our β coefficients. To compensate, we can use ridge regression. Ridge regression introduces a penalty on the size of our β coefficients. Specifically, our predictor $\hat{\beta}$ is estimated by finding the value of β that minimizes

$$
\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2
$$

where λ is our penalty factor. There are analytical methods for finding λ, but R is equipped to find an optimal choice for λ numerically (again, using cross-validation).

Our models using ridge regression are given by

- **X9LIT:** $55 + .8T + .12C + .0004A - .006CT + .00002AT + 00006AC$
- **AMLT:** $71 + .2T + .04C + .0003A + .008CT + .000008AT + .00004AC$
- **MATH1:** $19 + .9T + .33C + .0006A - .017CT + .00002AT + .00001AC$
- **MATH2:** $-3 + .6T + .006C + .01A - .1CT + .00004AT + .0002AC$
- **BIO:** $24 + 1.3T + .1C + .0007A - .05CT + .00003AT + .00001AC$
- **PHYS:** $59 + .08T - .0004C + .003A + .000007CT + .000007AT + .000003AC$
- **USH:** $13 + T + .2C + .0008CA - .03CT + .00003AT + .00001AC$
- **ECON:** $48 + .8T + .2C + .0004A + .001CT + .00001AT + .000006AC$
6.4. **LASSO Regression**: One final regression method, called LASSO (Least Absolute Shrinkage and Selection Operator) Regression, involves penalizing the absolute values of the β coefficients. Specifically, LASSO Regression minimizes

$$\sum_{i=1} \left(y_i - \beta_0 - \sum_{j=1} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1} |\beta_j|$$

It is similar to ridge regression, with one additional feature: variable selection. In other words, LASSO regression does allow certain variables to be penalized completely and set to zero (0). The LASSO models are given below.

- **X9LIT**: $48 + .0006A + 1.5T + .38C$
- **AMLIT**: $66 + .0004A + .69T + .25C$
- **MATH1**: $58 + .0009A + 1.6T + .84C$
- **MATH2**: $-20 + .001A + .71T + .73C$
- **BIO**: $12 + .001A + 2.1T + .58C$
- **PHYS**: $13 + .0007A + .25T + .026C$
- **USH**: $-1.2 + .001A + 1.9T + .77C$
- **ECON**: $37 + .0006A + 1.6T + .46C$

7. **Summary**

The following table lists the Root Mean Squared Error associated with each regression model. The lowest RMSE for each test is in **boldface**.

<table>
<thead>
<tr>
<th>EXAM/SUBJECT</th>
<th>LASSO</th>
<th>Ridge</th>
<th>Spline</th>
<th>Stepwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>9th Grade Lit/Comp</td>
<td>8.75900175</td>
<td>8.76300823</td>
<td>9.12699524</td>
<td>8.9350864</td>
</tr>
<tr>
<td>American Literature</td>
<td>8.43414292</td>
<td>8.48333596</td>
<td>9.12699524</td>
<td>6.39328181</td>
</tr>
<tr>
<td>Mathematics I</td>
<td>17.1487619</td>
<td>17.2158415</td>
<td>20.0041873</td>
<td>15.7984536</td>
</tr>
<tr>
<td>Mathematics II</td>
<td>19.494727</td>
<td>19.4980139</td>
<td>22.3881131</td>
<td>16.7411321</td>
</tr>
<tr>
<td>Biology</td>
<td>14.004759</td>
<td>13.9821969</td>
<td>16.2234089</td>
<td>13.5401353</td>
</tr>
<tr>
<td>Physical Science</td>
<td>15.2079303</td>
<td>15.62711218</td>
<td>17.844594</td>
<td>13.5420342</td>
</tr>
<tr>
<td>US History</td>
<td>17.0895619</td>
<td>17.5999318</td>
<td>19.031139</td>
<td>14.8808439</td>
</tr>
<tr>
<td>Economics</td>
<td>15.0960979</td>
<td>15.1768749</td>
<td>15.8498572</td>
<td>13.6579309</td>
</tr>
</tbody>
</table>
8. Conclusions

First we want to highlight some of the models.

- The stepwise model for Physical Science

\[\text{PHYS: } 42 + 0.00076A \]

seems to indicate that the only contributing factor to higher student achievement in Physical Science is the average teacher salary. Surely science teachers find this particularly inspiring. Also, the stepwise model generates the least amount of error.

- The LASSO model for Ninth Grade Literature & Composition

\[\text{X9LIT: } 48 + 0.0006A + 1.5T + 0.38C \]

generates less error than the stepwise model. A possible reason could be multicollinearity in the dataset. Also, the difference between the ridge regression error and the LASSO error is approximately 0.004 points. Again, multicollinearity could be the reason.

- The difference between the Biology stepwise model

\[\text{BIO: } 105 - 0.001A + 11T - 5.45C + 0.0002AC - 0.58CT \]

and the ridge model

\[\text{BIO: } 24 + 1.3T + 0.1C + 0.0007A - 0.05CT + 0.0003AT + 0.0001AC \]

is approximately half a point.

Smoothing spline regression performed relatively poorly throughout each of our models. A possible reason could be overfitting.

Intuitively, we would expect an increase in class sizes or technology ratios to lead to a decrease in test scores (i.e. a classroom with 20 students should, in theory, perform better than a classroom with 60 students). This is overwhelmingly untrue for most of our models. However, some degree of common sense should be utilized.

Lastly, it’s important to note that some error is to be expected as a result of our data cleaning methods. Every time we dropped a row or made a substitution, we were increasing our error.
9. **Further Research**

One idea for further research include using other regression models. In regards to this paper, a good idea for further research would be to attain a more complete dataset. Cleaning our dataset increased our error, so having data without so many holes would be beneficial. It would also be interesting to introduce more variables. We collected scores for certain demographics (white students, black students, Latino/a students, and those deemed economically disadvantaged). We decided not to include this analysis due to time constraints and overwhelming incompleteness in the data that was reported from the Georgia Department of Education, but again, it would be interesting to see if and how race affects test scores. Lastly, and pertaining to our discussion of classroom sizes in the Results section, it would be interesting to attempt to find an optimal classroom size.

10. **References**

(2) Hastie et al, *Elements of Statistical Learning* 2nd Edition by Springer

11. **Data Sources**

(1) GaDOE Technology Inventory Reports
 http://www.gadoe.org/Technology-Services/Instructional-Technology/Pages/Dashboard.aspx

(2) Teacher Salary Reports

(3) EOCT Score Reports
 http://www.gadoe.org/CCRPI

12. **Acknowledgements**

I have many people to thank for their assistance and support with this research endeavor. First I want to thank my advisor, Dr. Jebessa Mijena, without whose patience and guiding hand this project could never have been completed. I was also blessed with many other sources of support, and while the list is by no means exhaustive, I do wish to thank the following persons whose help was indispensable: Mrs. Jeanne Haslam, Dr. Kelli Brown, Dr. Bradley Koch, Mr. Hance Patrick, Dr. James Carlisle, Mr. Mike Augustine, Dr. Robert Blumenthal, Mr. Marc Cardinalli, and Dr. Michelle Masters.
13. Appendix

Plots and R Code are attached. The compiled dataset is available upon request (austin.lawson@bobcats.gcsu.edu).
Graphical Analysis
Histogram of AVG.SALARY

Histogram of CR.RATIO

Histogram of TECH.RATIO
Ninth Grade Literature & Composition

The plots show various diagnostics for a statistical model, including:

- **Residuals vs Fitted**: Scatter plot showing the residuals against the fitted values.
- **Normal Q-Q**: QQ-plot showing the standardized residuals against the theoretical quantiles.
- **Scale-Location**: Scatter plot showing the standardized residuals against the fitted values.
- **Residuals vs Leverage**: Scatter plot showing the standardized residuals against the leverage values.

These plots are used to assess the goodness of fit and identify any potential outliers or influential points in the model.
Ninth Grade Literature & Composition

![Graphs showing model spline data points and ridge trace with nPCs and coefficients.](image)
Mathematics I

![Residuals vs Fitted](image1)

![Normal Q-Q](image2)

![Scale–Location](image3)

![Residuals vs Leverage](image4)
Biology
Biology

![Graphs showing model spline, ridge trace, and L1 Norm Coefficients]
Physical Science

Residuals vs Fitted

Normal Q–Q

Scale–Location

Residuals vs Leverage
Physical Science

ridge trace

L1 Norm
Coefficients

model.spline$x
model.spline$y

1.0 1.5 2.0 2.5 3.0

−0.04 0.00 0.04 0.08

nPCs
coefficient

0.0 0.1 0.2 0.3 0.4

0.00 0.10 0.20 0.30
United States History

![Residuals vs Fitted](image)

![Normal Q–Q](image)

![Scale–Location](image)

![Residuals vs Leverage](image)
Economics

![Graphs showing model spline x, model spline y, ridge trace, coefficient, nPCs, and L1 Norm Coefficients.]
R Code
Ninth Grade Literature & Composition

Generating random subsets (test and train) of our population (data) for Cross-Validation.
set.seed(100)
data <- read.csv(file="dataCompiledDraft6.csv", header=T);
indexes <- sample(1:nrow(data), size=122, replace=FALSE)
test <- data[indexes,
]dim(test) # 6 11
train <- data[-indexes,
]dim(train) # 26 11

Load Packages
library(stats)
library(MASS)
library(ridge)
library(glmnet)
library(lars)

Stepwise Regression ### WORKS
model <-
 lm(X9LIT~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,
data=train)
model.step <- stepAIC(model, direction="both")
pred <- predict(model.step,newdata=test,interval="confidence", se.fit=TRUE)
rmse.step <- pred$residual.scale

Smooth Splines ### WORKS
attach(train)
model.spline <-
 smooth.spline(TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,train$X9LIT)
detach(train)
dim(test)
predicted <- predict(model.spline,newdata=test)
predicted <- as.data.frame(predicted)
predicted <- predicted[1:122,]
predicted <- predicted[,2]
predicted <- as.matrix(predicted)
observed <- as.matrix(test$X9LIT)
rmse.spline <- sqrt(sum((observed-predicted)^2)/122)

Ridge Regression ### WORKS
model.ridge <-
 linearRidge(X9LIT~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,data=train)
predicted <- predict(model.ridge, newdata=test)
rmse.ridge <- sqrt(sum((observed-predicted)^2)/122)

Lasso Regression
x <- as.matrix(train)
x <- x[,1:3]
y <- train$X9LIT
y <- as.matrix(y)
model.lasso <- glmnet(x,y,family="gaussian",alpha=1)
newx <- as.matrix(test)
newx <- newx[,1:3]
predicted <- predict(model.lasso,newx)
predicted <- predicted[,56]
predicted <- as.matrix(predicted)
rmse.lasso <- sqrt(sum((observed-predicted)^2)/122)

RMSE Summary
rmse.X9LIT <- c(rmse.lasso,rmse.ridge,rmse.spline,rmse.step)
rmse.X9LIT

End of File
```
# American Literature & Composition

# Generating random subsets (test and train) of our population (data)
# for Cross-Validation.
set.seed(100)
data <- read.csv(file="dataCompiledDraft6.csv", header=T);
indexes <- sample(1:nrow(data), size=122, replace=FALSE)
test <- data[indexes,]
dim(test)  # 6 11
train <- data[-indexes,]
dim(train) # 26 11

# Load Packages
library(stats)
library(MASS)
library(ridge)
library(glmnet)
library(lars)

# Stepwise Regression   ### WORKS ###
model <-
  lm(AMLIT~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
  CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
  AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
  TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,
data=train)
model.step <- stepAIC(model, direction="both")
pred <- predict(model.step,newdata=test,interval="confidence", se.fit=TRUE)
rmse.step <- pred$residual.scale

# Smooth Splines        ### WORKS ###
attach(train)
model.spline <-
  smooth.spline(TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
  CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
  AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
  TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,train$AMLIT)
detach(train)
dim(test)
predicted <- predict(model.spline,newdata=test)
predicted <- as.data.frame(predicted)
predicted <- predicted[1:122,]
predicted <- predicted[,2]
predicted <- as.matrix(predicted)
observed <- as.matrix(test$AMLIT)
rmse.spline <- sqrt(sum((observed-predicted)^2)/122)

# Ridge Regression      ### WORKS ###
model.ridge <-
  linearRidge(AMLIT~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
  CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+}
```
AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+

TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,data=train)
predicted <- predict(model.ridge, newdata=test)
rmse.ridge <- sqrt(sum((observed-predicted)^2)/122)

Lasso Regression
x <- as.matrix(train)
x <- x[,1:3]
y <- train$AMLIT
y <- as.matrix(y)
model.lasso <- glmnet(x,y,family="gaussian",alpha=1)
newx <- as.matrix(test)
ewx <- newx[,1:3]
predicted <- predict(model.lasso,newx)
predicted <- predicted[,56]
predicted <- as.matrix(predicted)
rmse.lasso <- sqrt(sum((observed-predicted)^2)/122)

RMSE Summary
rmse.AMLIT <- c(rmse.lasso,rmse.ridge,rmse.spline,rmse.step)
rmse.AMLIT

End of File
Mathematics I

Generating random subsets (test and train) of our population (data)
for Cross-Validation.set.seed(100)
data <- read.csv(file="dataCompiledDraft6.csv", header=T);
indexes <- sample(1:nrow(data), size=122, replace=FALSE)
test <- data[indexes,]
dim(test) # 6 11
train <- data[-indexes,]
dim(train) # 26 11

Load Packages
library(stats)
library(MASS)
library(ridge)
library(glmnet)
library(lars)

Stepwise Regression ### WORKS
model <-
 lm(MATH1~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,
 data=train)
model.step <- stepAIC(model, direction="both")
pred <- predict(model.step,newdata=test,interval="confidence", se.fit=TRUE)
rmse.step <- pred$residual.scale

Smooth Splines ### WORKS
attach(train)
model.spline <-
 smooth.spline(TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,
 train$MATH1)
detach(train)
dim(test)
predicted <- predict(model.spline,newdata=test)
predicted <- as.data.frame(predicted)
predicted <- predicted[1:122,]
predicted <- predicted[,2]
predicted <- as.matrix(predicted)
observed <- as.matrix(test$MATH1)
rmse.spline <- sqrt(sum((observed-predicted)^2)/122)

Ridge Regression ### WORKS
model.ridge <-
 linearRidge(MATH1~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,train$MATH1)
AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+

TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,data=train)
predicted <- predict(model.ridge, newdata=test)
rmse.ridge <- sqrt(sum((observed-predicted)^2)/122)

Lasso Regression
x <- as.matrix(train)
x <- x[,1:3]
y <- train$MATH1
y <- as.matrix(y)
model.lasso <- glmnet(x,y,family="gaussian",alpha=1)
newx <- as.matrix(test)
ewx <- newx[,1:3]
predicted <- predict(model.lasso,newx)
predicted <- predicted[,56]
predicted <- as.matrix(predicted)
rmse.lasso <- sqrt(sum((observed-predicted)^2)/122)

RMSE Summary
rmse.MATH1 <- c(rmse.lasso,rmse.ridge,rmse.spline,rmse.step)
rmse.MATH1

End of File
Mathematics II

Generating random subsets (test and train) of our population (data)
for Cross-Validation

```r
set.seed(100)
data <- read.csv(file="dataCompiledDraft6.csv", header=T);
indexes <- sample(1:nrow(data), size=122, replace=FALSE)
test <- data[indexes,]
dim(test)  # 6 11
train <- data[-indexes,]
dim(train) # 26 11
```

Load Packages

```r
library(stats)
library(MASS)
library(ridge)
library(glmnet)
library(lars)
```

Stepwise Regression ### WORKS

```r
model <-
  lm(MATH2~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+ CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+ AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+ TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,
data=train)
model.step <- stepAIC(model, direction="both")
pred <- predict(model.step,newdata=test,interval="confidence", se.fit=TRUE)
rmse.step <- pred$residual.scale
```

Smooth Splines ### WORKS

```r
attach(train)
model.spline <-
  smooth.spline(TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+ CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+ AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+ TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,train$MATH2)
detach(train)
dim(test)
predicted <- predict(model.spline,newdata=test)
predicted <- as.data.frame(predicted)
predicted <- predicted[1:122,]  
predicted <- predicted[,2]
predicted <- as.matrix(predicted)
observed <- as.matrix(test$MATH2)
rmse.spline <- sqrt(sum((observed-predicted)^2)/122)
```

Ridge Regression ### WORKS

```r
model.ridge <-
  linearRidge(MATH2~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+ CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
```

RYAN LAWSON (WITH DR. JEBESSA MIJENA)
AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+

TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY, data = train)
predicted <- predict(model.ridge, newdata = test)
rmse.ridge <- sqrt(sum((observed - predicted)^2)/122)

Lasso Regression
x <- as.matrix(train)
x <- x[,1:3]
y <- train$MATH2
y <- as.matrix(y)
model.lasso <- glmnet(x, y, family = "gaussian", alpha = 1)
newx <- as.matrix(test)
newx <- newx[,1:3]
predicted <- predict(model.lasso, newx)
predicted <- predicted[,56]
predicted <- as.matrix(predicted)
rmse.lasso <- sqrt(sum((observed - predicted)^2)/122)

RMSE Summary
rmse.MATH2 <- c(rmse.lasso, rmse.ridge, rmse.spline, rmse.step)
rmse.MATH2

End of File
Biology

Generating random subsets (test and train) of our population (data) for Cross-Validation.

```r
set.seed(100)
data <- read.csv(file="dataCompiledDraft6.csv", header=T);
indexes <- sample(1:nrow(data), size=122, replace=FALSE)
test <- data[indexes,]
dim(test)  # 6 11
train <- data[-indexes,]
dim(train) # 26 11
```

Load Packages

```r
library(stats)
library(MASS)
library(ridge)
library(glmnet)
library(lars)
```

Stepwise Regression ### WORKS

```r
model <-
  lm(BIO~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
      CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
      AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
      TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,
      data=train)
model.step <- stepAIC(model, direction="both")
pred <- predict(model.step,newdata=test,interval="confidence", se.fit=TRUE)
rmse.step <- pred$residual.scale
```

Smooth Splines ### WORKS

```r
attach(train)
model.spline <-
  smooth.spline(TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
      CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
      AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
      TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,train$BIO)
detach(train)
dim(test)
predicted <- predict(model.spline,newdata=test)
predicted <- as.data.frame(predicted)
predicted <- predicted[1:122,]
predicted <- as.matrix(predicted)
observed <- as.matrix(test$BIO)
rmse.spline <- sqrt(sum((observed-predicted)^2)/122)
```

Ridge Regression ### WORKS

```r
model.ridge <-
  linearRidge(BIO~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
      CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
      AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
      TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,train$BIO)
detach(train)
dim(test)
predicted <- predict(model.spline,newdata=test)
predicted <- as.data.frame(predicted)
predicted <- predicted[1:122,]
predicted <- as.matrix(predicted)
observed <- as.matrix(test$BIO)
rmse.spline <- sqrt(sum((observed-predicted)^2)/122)
```
AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+

TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY, data=train)
predicted <- predict(model.ridge, newdata=test)
rmse.ridge <- sqrt(sum((observed-predicted)^2)/122)

Lasso Regression
x <- as.matrix(train)
x <- x[,1:3]
y <- train$BIO
y <- as.matrix(y)
model.lasso <- glmnet(x,y,family="gaussian",alpha=1)
newx <- as.matrix(test)
ewx <- newx[,1:3]
predicted <- predict(model.lasso,newx)
predicted <- predicted[,56]
predicted <- as.matrix(predicted)
rmse.lasso <- sqrt(sum((observed-predicted)^2)/122)

RMSE Summary
rmse.BIO <- c(rmse.lasso,rmse.ridge,rmse.spline,rmse.step)
rmse.BIO

End of File
Physical Science

Generating random subsets (test and train) of our population (data)
for Cross-Validation.set.seed(100)
data <- read.csv(file="dataCompiledDraft6.csv", header=T);
indexes <- sample(1:nrow(data), size=122, replace=FALSE)
test <- data[indexes,]
dim(test) # 6 11
train <- data[-indexes,]
dim(train) # 26 11

Load Packages
library(stats)
library(MASS)
library(ridge)
library(glmnet)
library(lars)

Stepwise Regression ### WORKS
model <-
 lm(PHYS~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,
 data=train)
model.step <- stepAIC(model, direction="both")
pred <- predict(model.step,newdata=test,interval="confidence", se.fit=TRUE)
rmse.step <- pred$residual.scale

Smooth Splines ### WORKS
attach(train)
model.spline <-
 smooth.spline(TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY, train$PHYS)
detach(train)
dim(test)
predicted <- predict(model.spline,newdata=test)
predicted <- as.data.frame(predicted)
predicted <- predicted[1:122,]
predicted <- predicted[,2]
predicted <- as.matrix(predicted)
observed <- as.matrix(test$PHYS)
rmse.spline <- sqrt(sum((observed-predicted)^2)/122)

Ridge Regression ### WORKS
model.ridge <-
 linearRidge(PHYS~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+...
AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY, data=train)
predicted <- predict(model.ridge, newdata=test)
rmse.ridge <- sqrt(sum((observed-predicted)^2)/122)

Lasso Regression
x <- as.matrix(train)
x <- x[,1:3]
y <- train$PHYS
y <- as.matrix(y)
model.lasso <- glmnet(x,y,family="gaussian",alpha=1)
newx <- as.matrix(test)
ewx <- newx[,1:3]
predicted <- predict(model.lasso,newx)
predicted <- predicted[,56]
predicted <- as.matrix(predicted)
rmse.lasso <- sqrt(sum((observed-predicted)^2)/122)

RMSE Summary
rmse.PHYS <- c(rmse.lasso,rmse.ridge,rmse.spline,rmse.step)
rmse.PHYS

End of File
United States History

Generating random subsets (test and train) of our population (data)
for Cross-Validation.
set.seed(100)
data <- read.csv(file="dataCompiledDraft6.csv", header=T);
indexes <- sample(1:nrow(data), size=122, replace=FALSE)
test <- data[indexes,]
dim(test) # 6 11
train <- data[-indexes,]
dim(train) # 26 11

Load Packages
library(stats)
library(MASS)
library(ridge)
library(glmnet)
library(lars)

Stepwise Regression ### WORKS
model <-
lm(USH~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,
 data=train)
model.step <- stepAIC(model, direction="both")
pred <- predict(model.step,newdata=test,interval="confidence", se.fit=TRUE)
rmse.step <- pred$residual.scale

Smooth Splines ### WORKS
attach(train)
model.spline <-
smooth.spline(TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,train$USH)
detach(train)
dim(test)
predicted <- predict(model.spline,newdata=test)
predicted <- as.data.frame(predicted)
predicted <- predicted[1:122,]
predicted <- as.matrix(predicted)
observed <- as.matrix(test$USH)
rmse.spline <- sqrt(sum((observed-predicted)^2)/122)

Ridge Regression ### WORKS
model.ridge <-
linearRidge(USH~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,train$USH)
AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY*AVG.SALARY+AVG.SALARY+

TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY, data=train)
predicted <- predict(model.ridge, newdata=test)
rmse.ridge <- sqrt(sum((observed-predicted)^2)/122)

Lasso Regression
x <- as.matrix(train)
x <- x[,1:3]
y <- train$USH
y <- as.matrix(y)
model.lasso <- glmnet(x,y,family="gaussian",alpha=1)
newx <- as.matrix(test)
newx <- newx[,1:3]
predicted <- predict(model.lasso,newx)
predicted <- predicted[,56]
predicted <- as.matrix(predicted)
rmse.lasso <- sqrt(sum((observed-predicted)^2)/122)

RMSE Summary
rmse.USH <- c(rmse.lasso,rmse.ridge,rmse.spline,rmse.step)
rmse.USH

End of File
Economics

Generating random subsets (test and train) of our population (data) for Cross-Validation

data <- read.csv(file="dataCompiledDraft6.csv", header=T);
indexes <- sample(1:nrow(data), size=122, replace=FALSE)
test <- data[indexes,
]
dim(test) # 6 11
train <- data[-indexes,
]
dim(train) # 26 11

Load Packages
library(stats)
library(MASS)
library(ridge)
library(glmnet)
library(lars)

Stepwise Regression ### WORKS
model <-
 lm(ECON~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY+AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY, data=train)
model.step <- stepAIC(model, direction="both")
pred <- predict(model.step,newdata=test,interval="confidence", se.fit=TRUE)
rmse.step <- pred$residual.scale

Smooth Splines ### WORKS
attach(train)
model.spline <-
 smooth.spline(TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
 AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY+AVG.SALARY+AVG.SALARY+
 TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY,train$ECON)
detach(train)
dim(test)
predicted <- predict(model.spline,newdata=test)
predicted <- as.data.frame(predicted)
predicted <- predicted[1:122,]
predicted <- predicted[,2]
predicted <- as.matrix(predicted)
observed <- as.matrix(test$ECON)
rmse.spline <- sqrt(sum((observed-predicted)^2)/122)

Ridge Regression ### WORKS
model.ridge <-
 linearRidge(ECON~TECH.RATIO*TECH.RATIO*TECH.RATIO+TECH.RATIO*TECH.RATIO+TECH.RATIO+
 CR.RATIO*CR.RATIO*CR.RATIO+CR.RATIO*CR.RATIO+CR.RATIO+
AVG.SALARY*AVG.SALARY*AVG.SALARY+AVG.SALARY+AVG.SALARY+AVG.SALARY+

TECH.RATIO*CR.RATIO+TECH.RATIO*AVG.SALARY+CR.RATIO*AVG.SALARY, data=train)
predicted <- predict(model.ridge, newdata=test)
rmse.ridge <- sqrt(sum((observed-predicted)^2)/122)

Lasso Regression
x <- as.matrix(train)
x <- x[,1:3]
y <- train$ECON
y <- as.matrix(y)
model.lasso <- glmnet(x,y,family="gaussian",alpha=1)
newx <- as.matrix(test)
newx <- newx[,1:3]
predicted <- predict(model.lasso,newx)
predicted <- predicted[,56]
predicted <- as.matrix(predicted)
rmse.lasso <- sqrt(sum((observed-predicted)^2)/122)

RMSE Summary
rmse.ECON <- c(rmse.lasso,rmse.ridge,rmse.spline,rmse.step)
rmse.ECON

End of File